Extended exceptional points in projected non-Hermitian systems

Xiao-Ran Wang, Fei Yang, Xian-Qi Tong, Xiao-Jie Yu, Kui Cao, S. Kou
{"title":"Extended exceptional points in projected non-Hermitian systems","authors":"Xiao-Ran Wang, Fei Yang, Xian-Qi Tong, Xiao-Jie Yu, Kui Cao, S. Kou","doi":"10.1088/1367-2630/ad327d","DOIUrl":null,"url":null,"abstract":"\n Exceptional points are interesting physical phenomena in non-Hermitian physics at which the eigenvalues are degenerate and the eigenvectors coalesce. In this paper, we find that in projected non-Hermitian two-level systems (sub-systems under projecting partial Hilbert space) the singularities of exceptional points (EPs) is due to basis defectiveness rather than energy degeneracy or state coalescence. This leads to the discovery of extended exceptional points (EEPs). For EEPs, more subtle structures (e.g., the so-called Bloch peach), additional classification, and “hidden” quantum phase transitions are explored. By using the topologically protected sub-space from two edge states in the non-Hermitian Su–Schrieffer–Heeger model as an example, we illustrate the physical properties of different types of EEPs.","PeriodicalId":508829,"journal":{"name":"New Journal of Physics","volume":"20 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad327d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exceptional points are interesting physical phenomena in non-Hermitian physics at which the eigenvalues are degenerate and the eigenvectors coalesce. In this paper, we find that in projected non-Hermitian two-level systems (sub-systems under projecting partial Hilbert space) the singularities of exceptional points (EPs) is due to basis defectiveness rather than energy degeneracy or state coalescence. This leads to the discovery of extended exceptional points (EEPs). For EEPs, more subtle structures (e.g., the so-called Bloch peach), additional classification, and “hidden” quantum phase transitions are explored. By using the topologically protected sub-space from two edge states in the non-Hermitian Su–Schrieffer–Heeger model as an example, we illustrate the physical properties of different types of EEPs.
投影非ermitian 系统中的扩展例外点
异常点是非赫米特物理学中有趣的物理现象,在异常点处,特征值退化,特征向量凝聚。在本文中,我们发现在投影非ermitian 两级系统(部分希尔伯特空间投影下的子系统)中,异常点(EPs)的奇异性是由于基缺陷而不是能量退化或状态凝聚造成的。这导致了扩展异常点(EEPs)的发现。对于 EEPs,可以探索更微妙的结构(如所谓的布洛赫桃)、额外的分类和 "隐藏的 "量子相变。我们以非ermitian Su-Schrieffer-Heeger 模型中两个边缘状态的拓扑保护子空间为例,说明了不同类型 EEPs 的物理特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信