Applied Machine Learning for Information Security

Sagar Samtani, Edward Raff, Hyrum Anderson
{"title":"Applied Machine Learning for Information Security","authors":"Sagar Samtani, Edward Raff, Hyrum Anderson","doi":"10.1145/3652029","DOIUrl":null,"url":null,"abstract":"\n Information security has undoubtedly become a critical aspect of modern cybersecurity practices. Over the last half-decade, numerous academic and industry groups have sought to develop machine learning, deep learning, and other areas of artificial intelligence-enabled analytics into information security practices. The Conference on Applied Machine Learning (CAMLIS) is an emerging venue that seeks to gather researchers and practitioners to discuss applied and fundamental research on machine learning for information security applications. In 2021, CAMLIS partnered with\n ACM Digital Threats: Research and Practice (DTRAP)\n to provide opportunities for authors of accepted CAMLIS papers to submit their research for consideration into\n ACM DTRAP\n via a Special Issue on Applied Machine Learning for Information Security. This editorial summarizes the results of this Special Issue.\n","PeriodicalId":202552,"journal":{"name":"Digital Threats: Research and Practice","volume":"28 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Threats: Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3652029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Information security has undoubtedly become a critical aspect of modern cybersecurity practices. Over the last half-decade, numerous academic and industry groups have sought to develop machine learning, deep learning, and other areas of artificial intelligence-enabled analytics into information security practices. The Conference on Applied Machine Learning (CAMLIS) is an emerging venue that seeks to gather researchers and practitioners to discuss applied and fundamental research on machine learning for information security applications. In 2021, CAMLIS partnered with ACM Digital Threats: Research and Practice (DTRAP) to provide opportunities for authors of accepted CAMLIS papers to submit their research for consideration into ACM DTRAP via a Special Issue on Applied Machine Learning for Information Security. This editorial summarizes the results of this Special Issue.
信息安全应用机器学习
信息安全无疑已成为现代网络安全实践的一个重要方面。在过去的半个多世纪里,众多学术和行业团体都在努力将机器学习、深度学习和其他人工智能分析领域发展到信息安全实践中。应用机器学习会议(CAMLIS)是一个新兴的会议场所,旨在聚集研究人员和从业人员,讨论机器学习在信息安全应用方面的应用和基础研究。2021 年,CAMLIS 与 ACM Digital Threats:研究与实践》(DTRAP)合作,为已录用 CAMLIS 论文的作者提供机会,通过《信息安全应用机器学习》特刊将其研究成果提交 ACM DTRAP 审议。本社论总结了该特刊的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信