Research on Improved Algorithm for Small Object Detection in Intelligent Surveillance Video based on YOLOv7

Zhiwei Wang, Min Wang
{"title":"Research on Improved Algorithm for Small Object Detection in Intelligent Surveillance Video based on YOLOv7","authors":"Zhiwei Wang, Min Wang","doi":"10.54097/ehvf7754","DOIUrl":null,"url":null,"abstract":"In order to address the issue of small objects being difficult to detect effectively in intelligent surveillance videos, this study proposes an improved scheme for the YOLOv7-tiny algorithm. This scheme integrates the Convolutional Block Attention Module (CBAM) into YOLOv7-tiny, effectively enhancing the model's feature extraction and small object detection capabilities in complex backgrounds, thereby improving the overall detection precision. Experimental evaluations indicate that the improved algorithm shows enhanced performance in specific small object detection tasks, achieving an accuracy of 85.6%, a recall rate of 85.2%, and a mean average precision (mAP) of 90.2%. These results demonstrate the effectiveness and practical value of the improved scheme in enhancing the performance of YOLOv7-tiny in small object detection tasks.","PeriodicalId":504530,"journal":{"name":"Frontiers in Computing and Intelligent Systems","volume":"45 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/ehvf7754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to address the issue of small objects being difficult to detect effectively in intelligent surveillance videos, this study proposes an improved scheme for the YOLOv7-tiny algorithm. This scheme integrates the Convolutional Block Attention Module (CBAM) into YOLOv7-tiny, effectively enhancing the model's feature extraction and small object detection capabilities in complex backgrounds, thereby improving the overall detection precision. Experimental evaluations indicate that the improved algorithm shows enhanced performance in specific small object detection tasks, achieving an accuracy of 85.6%, a recall rate of 85.2%, and a mean average precision (mAP) of 90.2%. These results demonstrate the effectiveness and practical value of the improved scheme in enhancing the performance of YOLOv7-tiny in small object detection tasks.
基于 YOLOv7 的智能监控视频小目标检测改进算法研究
针对智能监控视频中小物体难以有效检测的问题,本研究提出了一种 YOLOv7-tiny 算法的改进方案。该方案将卷积块注意力模块(CBAM)集成到 YOLOv7-tiny 中,有效增强了模型的特征提取能力和复杂背景下的小目标检测能力,从而提高了整体检测精度。实验评估表明,改进后的算法在特定的小物体检测任务中表现出更高的性能,准确率达到 85.6%,召回率达到 85.2%,平均精度(mAP)达到 90.2%。这些结果证明了改进方案在提高 YOLOv7-tiny 在小型物体检测任务中的性能方面的有效性和实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信