Dynamics of $2\times2$ matrix non-Hermitian quantum systems on Bloch sphere

Li-Bin Fu
{"title":"Dynamics of $2\\times2$ matrix non-Hermitian quantum systems on Bloch sphere","authors":"Li-Bin Fu","doi":"10.1088/1572-9494/ad3223","DOIUrl":null,"url":null,"abstract":"\n By casting evolution to Bloch sphere, the dynamics of $2\\times2$ matrix non-Hermitian systems is investigated in detail. It shows that there are four kinds of dynamical mode for such systems. The different modes are classified by different kinds of fixed points, namely, the elliptic point, spiral point, critical node, and degenerate point. The Hermitian systems and the unbroken $\\mathcal{PT}$ non-Hermitian cases belong to the category with elliptic points. The degenerate point just corresponds to the systems with exceptional point (EP). The topological properties of the fixed point are also discussed. It is interesting that the topological charge for degenerate point is $2$ while the others are $1$.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad3223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By casting evolution to Bloch sphere, the dynamics of $2\times2$ matrix non-Hermitian systems is investigated in detail. It shows that there are four kinds of dynamical mode for such systems. The different modes are classified by different kinds of fixed points, namely, the elliptic point, spiral point, critical node, and degenerate point. The Hermitian systems and the unbroken $\mathcal{PT}$ non-Hermitian cases belong to the category with elliptic points. The degenerate point just corresponds to the systems with exceptional point (EP). The topological properties of the fixed point are also discussed. It is interesting that the topological charge for degenerate point is $2$ while the others are $1$.
布洛赫球上2美元/次2美元矩阵非赫米提量子系统的动力学
通过将演化投射到布洛赫球,详细研究了2\times2$ 矩阵非赫米提系统的动力学。研究表明,此类系统存在四种动力学模式。不同的模式按不同的定点分类,即椭圆点、螺旋点、临界点和退化点。赫米特系统和未断裂的 $\mathcal{PT}$ 非赫米特情况属于有椭圆点的类别。退化点只对应于有例外点(EP)的系统。我们还讨论了定点的拓扑性质。有趣的是,退化点的拓扑电荷为 2 美元,而其他点的拓扑电荷为 1 美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信