{"title":"Finite-time control for input-saturated system based on event-triggered strategy","authors":"Qian Wang, Zhiqiang Zhang, Yuqi Jiang","doi":"10.1177/01423312241232471","DOIUrl":null,"url":null,"abstract":"For systems with higher control accuracy requirements, the requirements for convergence time are also higher, such as requiring the system to maintain stability in a finite time. This paper studies the finite-time control for input-saturated system based on the event-triggered strategy and the parametric Lyapunov equation. A finite-time state feedback controller and a finite-time output feedback controller are designed by introducing a time-varying parameter which can be obtained by solving a differential equation. The proposed methods make the closed-loop system stable in finite time and save the system resources. The designed controller overcomes the problem of slow convergence speed caused by low-gain feedback control. The numerical simulation results demonstrate the effectiveness of the proposed methods.","PeriodicalId":507087,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"136 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312241232471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For systems with higher control accuracy requirements, the requirements for convergence time are also higher, such as requiring the system to maintain stability in a finite time. This paper studies the finite-time control for input-saturated system based on the event-triggered strategy and the parametric Lyapunov equation. A finite-time state feedback controller and a finite-time output feedback controller are designed by introducing a time-varying parameter which can be obtained by solving a differential equation. The proposed methods make the closed-loop system stable in finite time and save the system resources. The designed controller overcomes the problem of slow convergence speed caused by low-gain feedback control. The numerical simulation results demonstrate the effectiveness of the proposed methods.