Pengqiang Ge, Yiyang Chen, Guina Wang, G. Weng, Hongtian Chen
{"title":"A level set approach using adaptive local pre-fitting energy for image segmentation with intensity non-uniformity","authors":"Pengqiang Ge, Yiyang Chen, Guina Wang, G. Weng, Hongtian Chen","doi":"10.3233/jifs-237629","DOIUrl":null,"url":null,"abstract":"Active contour model (ACM) is considered as one of the most frequently employed models in image segmentation due to its effectiveness and efficiency. However, the segmentation results of images with intensity non-uniformity processed by the majority of existing ACMs are possibly inaccurate or even wrong in the forms of edge leakage, long convergence time and poor robustness. In addition, they usually become unstable with the existence of different initial contours and unevenly distributed intensity. To better solve these problems and improve segmentation results, this paper puts forward an ACM approach using adaptive local pre-fitting energy (ALPF) for image segmentation with intensity non-uniformity. Firstly, the pre-fitting functions generate fitted images inside and outside contour line ahead of iteration, which significantly reduces convergence time of level set function. Next, an adaptive regularization function is designed to normalize the energy range of data-driven term, which improves robustness and stability to different initial contours and intensity non-uniformity. Lastly, an improved length constraint term is utilized to continuously smooth and shorten zero level set, which reduces the chance of edge leakage and filters out irrelevant background noise. In contrast with newly constructed ACMs, ALPF model not only improves segmentation accuracy (Intersection over union(IOU)), but also significantly reduces computation cost (CPU operating time T), while handling three types of images. Experiments also indicate that it is not only more robust to different initial contours as well as different noise, but also more competent to process images with intensity non-uniformity.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"137 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-237629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Active contour model (ACM) is considered as one of the most frequently employed models in image segmentation due to its effectiveness and efficiency. However, the segmentation results of images with intensity non-uniformity processed by the majority of existing ACMs are possibly inaccurate or even wrong in the forms of edge leakage, long convergence time and poor robustness. In addition, they usually become unstable with the existence of different initial contours and unevenly distributed intensity. To better solve these problems and improve segmentation results, this paper puts forward an ACM approach using adaptive local pre-fitting energy (ALPF) for image segmentation with intensity non-uniformity. Firstly, the pre-fitting functions generate fitted images inside and outside contour line ahead of iteration, which significantly reduces convergence time of level set function. Next, an adaptive regularization function is designed to normalize the energy range of data-driven term, which improves robustness and stability to different initial contours and intensity non-uniformity. Lastly, an improved length constraint term is utilized to continuously smooth and shorten zero level set, which reduces the chance of edge leakage and filters out irrelevant background noise. In contrast with newly constructed ACMs, ALPF model not only improves segmentation accuracy (Intersection over union(IOU)), but also significantly reduces computation cost (CPU operating time T), while handling three types of images. Experiments also indicate that it is not only more robust to different initial contours as well as different noise, but also more competent to process images with intensity non-uniformity.