Simulation for migration and treatment of groundwater contamination in coal mining subsidence area: A case study of Datong dump, Huainan, China

Ayesha Selhaba, Guangquan Xu, Bao Hui, Amna Iqbal
{"title":"Simulation for migration and treatment of groundwater contamination in coal mining subsidence area: A case study of Datong dump, Huainan, China","authors":"Ayesha Selhaba, Guangquan Xu, Bao Hui, Amna Iqbal","doi":"10.56946/jce.v3i1.297","DOIUrl":null,"url":null,"abstract":"The liquid that seeps into the earth from landfills and removes garbage is called landfill leachate. Pollutants like organic and inorganic chemicals, xenobiotic substances, etc. are found in landfill leachate which contaminates groundwater. To study the contamination and treatment of landfill leachate to groundwater, Datong landfill was selected as a target zone. Samples of monitoring wells in the landfill site, the eastern collapse pond, and wells in groundwater from the goaf were tested and analyzed for TDS, conductivity, and dissolved oxygen (DO). To simulate all processes, various modules were built under different conditions. It was found that the leachate not only had polluted surface water but also groundwater. The simulation results showed that the pollution plume expanded spatially and temporally, mainly flowing from west to east and spreading to the north-south direction and reverse flow direction due to the low water level between the east and west sides. Anti-seepage walls and pumping-injection methods were used to control the migration and diffusion of pollution from landfill leachate. The simulation results also showed that both methods were effective in reducing the concentration and range of pollution plumes which would provide a theoretical basis for the treatment of pollutants in the Datong landfill site.","PeriodicalId":29792,"journal":{"name":"Journal of Chemistry and Environment","volume":"41 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemistry and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56946/jce.v3i1.297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The liquid that seeps into the earth from landfills and removes garbage is called landfill leachate. Pollutants like organic and inorganic chemicals, xenobiotic substances, etc. are found in landfill leachate which contaminates groundwater. To study the contamination and treatment of landfill leachate to groundwater, Datong landfill was selected as a target zone. Samples of monitoring wells in the landfill site, the eastern collapse pond, and wells in groundwater from the goaf were tested and analyzed for TDS, conductivity, and dissolved oxygen (DO). To simulate all processes, various modules were built under different conditions. It was found that the leachate not only had polluted surface water but also groundwater. The simulation results showed that the pollution plume expanded spatially and temporally, mainly flowing from west to east and spreading to the north-south direction and reverse flow direction due to the low water level between the east and west sides. Anti-seepage walls and pumping-injection methods were used to control the migration and diffusion of pollution from landfill leachate. The simulation results also showed that both methods were effective in reducing the concentration and range of pollution plumes which would provide a theoretical basis for the treatment of pollutants in the Datong landfill site.
采煤沉陷区地下水污染迁移与治理模拟:中国淮南大通垃圾场案例研究
从垃圾填埋场渗入地下并清除垃圾的液体称为垃圾填埋场沥滤液。垃圾渗滤液中含有有机和无机化学物质、异生物物质等污染物,会污染地下水。为了研究垃圾填埋场渗滤液对地下水的污染和处理,大同垃圾填埋场被选为目标区。对垃圾填埋场内的监测井、东部塌陷池和沼泽地地下水井的样本进行了 TDS、电导率和溶解氧(DO)测试和分析。为了模拟所有过程,在不同条件下建立了各种模块。结果发现,沥滤液不仅污染了地表水,还污染了地下水。模拟结果表明,由于东西两侧水位较低,污染羽流在空间和时间上都有所扩大,主要由西向东流动,并向南北方向和反向流动方向扩散。为控制垃圾填埋场渗滤液污染的迁移和扩散,采用了防渗墙和抽水注入法。模拟结果还表明,这两种方法都能有效降低污染羽流的浓度和范围,为大同垃圾填埋场污染物的处理提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemistry and Environment
Journal of Chemistry and Environment Chemistry and Environmental Sciences-
自引率
0.00%
发文量
0
期刊介绍: Journal of Chemistry and Environment (ISSN: 2959-0132) is a peer-reviewed, open-access international journal that publishes original research and reviews in the fields of chemistry and protecting our environment for the future in an ongoing way. Our central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field. All scales of studies and analysis, from impactful fundamental advances in chemistry to interdisciplinary research across physical chemistry, organic chemistry, inorganic chemistry, biochemistry, chemical engineering, and environmental chemistry disciplines are welcomed. All manuscripts must be prepared in English and are subject to a rigorous and fair peer-review process. Accepted papers will appear online within 3 weeks followed by printed hard copies. Note: There are no Article Publication Charges. (100% waived). Welcome to submit your Mini reviews, full reviews, and research articles. Journal of Chemistry and Environment aims to publish high-quality research in the following areas: (Topics include, but are not limited to, the following) • Physical, organic, inorganic & analytical chemistry • Biochemistry & medicinal chemistry • Environmental chemistry & environmental impacts of energy technologies • Chemical physics, material & computational chemistry • Catalysis, electrocatalysis & photocatalysis • Energy, fuel cells & batteries Journal of Chemistry and Environment publishes: • Full papers • Reviews • Minireviews
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信