Existence and Stability Results for Time-Dependent Impulsive Neutral Stochastic Partial Integrodifferential Equations with Rosenblatt Process and Poisson Jumps

Q4 Mathematics
D. Chalishajar, Ramkumar Kasinathan, Ravikumar Kasinathan
{"title":"Existence and Stability Results for Time-Dependent Impulsive Neutral Stochastic Partial Integrodifferential Equations with Rosenblatt Process and Poisson Jumps","authors":"D. Chalishajar, Ramkumar Kasinathan, Ravikumar Kasinathan","doi":"10.2478/tmmp-2024-0002","DOIUrl":null,"url":null,"abstract":"\n In this paper, we discuss the existence, uniqueness and stability of mild solutions of time-dependent impulsive neutral stochastic partial integrodifferential equations with the Rosenblatt process and Poisson jumps. The existence of mild solutions for the equations is discussed by means of the semigroup theory and theory of the resolvent operator. Next, under some sufficient conditions, the results are obtained by using the method of successive approximation and Bihari’s inequality. Finally, an example is provided to illustrate our results.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"43 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2024-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we discuss the existence, uniqueness and stability of mild solutions of time-dependent impulsive neutral stochastic partial integrodifferential equations with the Rosenblatt process and Poisson jumps. The existence of mild solutions for the equations is discussed by means of the semigroup theory and theory of the resolvent operator. Next, under some sufficient conditions, the results are obtained by using the method of successive approximation and Bihari’s inequality. Finally, an example is provided to illustrate our results.
具有罗森布拉特过程和泊松跳跃的时变脉冲中性随机偏积分微分方程的存在性和稳定性结果
本文讨论了具有罗森布拉特过程和泊松跳跃的时变脉冲中性随机偏微分方程的温和解的存在性、唯一性和稳定性。通过半群理论和解析算子理论讨论了方程温和解的存在性。接着,在一些充分条件下,利用逐次逼近法和比哈里不等式得出了结果。最后,举例说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信