{"title":"Neuron image segmentation based on convolution and BN fusion and multi-input feature fusion","authors":"Fuyun He, Huiling Feng, Xiaohu Tang","doi":"10.3233/jifs-236286","DOIUrl":null,"url":null,"abstract":"The segmentation of neuronal morphology in electron microscopy images is crucial for the analysis and understanding of neuronal function. However, most of the existing segmentation methods are not suitable for challenging datasets where the neuronal structure is contaminated by noise or has interrupted parts. In this paper, we propose a segmentation method based on deep learning to determine the location information of neurons and reduce the influence of image noise in the data. Specifically, we adapt our neuron dataset based on UNet by using convolution with BN fusion and multi-input feature fusion. The method is named REDAFNet. The model simplifies the model structure and enhances the generalization ability by fusing the convolution layer and BN layer. The noise interference in the data was reduced by multi-input feature fusion, and the ability to understand and express the data was enhanced. The method takes a neuron image as input and its pixel segmentation map as output. Experimental results show that the segmentation accuracy of the proposed method is 91.96%, 93.86% and 80.25% on the ISBI2012 dataset, U-RISC retinal neuron dataset and N2DH-GOWT1 stem cell dataset, respectively. Compared with the existing segmentation methods, the proposed method can extract more complete feature information and achieve more accurate segmentation.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-236286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The segmentation of neuronal morphology in electron microscopy images is crucial for the analysis and understanding of neuronal function. However, most of the existing segmentation methods are not suitable for challenging datasets where the neuronal structure is contaminated by noise or has interrupted parts. In this paper, we propose a segmentation method based on deep learning to determine the location information of neurons and reduce the influence of image noise in the data. Specifically, we adapt our neuron dataset based on UNet by using convolution with BN fusion and multi-input feature fusion. The method is named REDAFNet. The model simplifies the model structure and enhances the generalization ability by fusing the convolution layer and BN layer. The noise interference in the data was reduced by multi-input feature fusion, and the ability to understand and express the data was enhanced. The method takes a neuron image as input and its pixel segmentation map as output. Experimental results show that the segmentation accuracy of the proposed method is 91.96%, 93.86% and 80.25% on the ISBI2012 dataset, U-RISC retinal neuron dataset and N2DH-GOWT1 stem cell dataset, respectively. Compared with the existing segmentation methods, the proposed method can extract more complete feature information and achieve more accurate segmentation.