A Principled Distributional Approach to Trajectory Similarity Measurement and its Application to Anomaly Detection

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yufan Wang, Zijing Wang, Kai Ming Ting, Yuanyi Shang
{"title":"A Principled Distributional Approach to Trajectory Similarity Measurement and its Application to Anomaly Detection","authors":"Yufan Wang, Zijing Wang, Kai Ming Ting, Yuanyi Shang","doi":"10.1613/jair.1.15849","DOIUrl":null,"url":null,"abstract":"This paper aims to solve two enduring challenges in existing trajectory similarity measures: computational inefficiency and the absence of the ‘uniqueness’ property that should be guaranteed in a distance function: dist(X, Y ) = 0 if and only if X = Y , where X and Y are two trajectories. In this work, we present a novel approach utilizing a distributional kernel for trajectory representation and similarity measurement, based on the kernel mean embedding framework. It is the very first time a distributional kernel is used for trajectory representation and similarity measurement. Our method does not rely on point-to-point distances which are used in most existing distances for trajectories. Unlike prevalent learning and deep learning approaches, our method requires no learning. We show the generality of this new approach in anomalous trajectory and sub-trajectory detection. We identify that the distributional kernel has (i) a data-dependent property and the ‘uniqueness’ property which are the key factors that lead to its superior task-specific performance, and (ii) runtime orders of magnitude faster than existing distance measures.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.15849","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to solve two enduring challenges in existing trajectory similarity measures: computational inefficiency and the absence of the ‘uniqueness’ property that should be guaranteed in a distance function: dist(X, Y ) = 0 if and only if X = Y , where X and Y are two trajectories. In this work, we present a novel approach utilizing a distributional kernel for trajectory representation and similarity measurement, based on the kernel mean embedding framework. It is the very first time a distributional kernel is used for trajectory representation and similarity measurement. Our method does not rely on point-to-point distances which are used in most existing distances for trajectories. Unlike prevalent learning and deep learning approaches, our method requires no learning. We show the generality of this new approach in anomalous trajectory and sub-trajectory detection. We identify that the distributional kernel has (i) a data-dependent property and the ‘uniqueness’ property which are the key factors that lead to its superior task-specific performance, and (ii) runtime orders of magnitude faster than existing distance measures.
轨迹相似性测量的原则性分布方法及其在异常检测中的应用
本文旨在解决现有轨迹相似性测量中的两大难题:计算效率低下和缺乏距离函数应保证的 "唯一性 "属性:当且仅当 X = Y 时,dist(X, Y ) = 0,其中 X 和 Y 是两条轨迹。在这项工作中,我们基于核均值嵌入框架,提出了一种利用分布核进行轨迹表示和相似性测量的新方法。这是首次将分布核用于轨迹表示和相似性测量。我们的方法不依赖于点对点距离,而现有的大多数轨迹距离都使用点对点距离。与流行的学习和深度学习方法不同,我们的方法无需学习。我们在异常轨迹和子轨迹检测中展示了这种新方法的通用性。我们发现分布核具有(i)数据依赖性和 "唯一性 "属性,这是导致其在特定任务中性能优越的关键因素,以及(ii)运行时间比现有距离测量方法快几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research 工程技术-计算机:人工智能
CiteScore
9.60
自引率
4.00%
发文量
98
审稿时长
4 months
期刊介绍: JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信