Shaheen Fatima, Nicholas R. Jennings, Michael Wooldridge
{"title":"Learning to Resolve Social Dilemmas: A Survey","authors":"Shaheen Fatima, Nicholas R. Jennings, Michael Wooldridge","doi":"10.1613/jair.1.15167","DOIUrl":null,"url":null,"abstract":"Social dilemmas are situations of inter-dependent decision making in which individual rationality can lead to outcomes with poor social qualities. The ubiquity of social dilemmas in social, biological, and computational systems has generated substantial research across these diverse disciplines into the study of mechanisms for avoiding deficient outcomes by promoting and maintaining mutual cooperation. Much of this research is focused on studying how individuals faced with a dilemma can learn to cooperate by adapting their behaviours according to their past experience. In particular, three types of learning approaches have been studied: evolutionary game-theoretic learning, reinforcement learning, and best-response learning. This article is a comprehensive integrated survey of these learning approaches in the context of dilemma games. We formally introduce dilemma games and their inherent challenges. We then outline the three learning approaches and, for each approach, provide a survey of the solutions proposed for dilemma resolution. Finally, we provide a comparative summary and discuss directions in which further research is needed.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.15167","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Social dilemmas are situations of inter-dependent decision making in which individual rationality can lead to outcomes with poor social qualities. The ubiquity of social dilemmas in social, biological, and computational systems has generated substantial research across these diverse disciplines into the study of mechanisms for avoiding deficient outcomes by promoting and maintaining mutual cooperation. Much of this research is focused on studying how individuals faced with a dilemma can learn to cooperate by adapting their behaviours according to their past experience. In particular, three types of learning approaches have been studied: evolutionary game-theoretic learning, reinforcement learning, and best-response learning. This article is a comprehensive integrated survey of these learning approaches in the context of dilemma games. We formally introduce dilemma games and their inherent challenges. We then outline the three learning approaches and, for each approach, provide a survey of the solutions proposed for dilemma resolution. Finally, we provide a comparative summary and discuss directions in which further research is needed.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.