ANALISIS PERBANDINGAN METODE ARIMA DAN LEAST SQUARE UNTUK PREDIKSI HARGA EMAS : PENDEKATAN PROBABILISTIK DAN STATISTIK

Dita Anggelia, Y. Riti, Paulus William Siswanto
{"title":"ANALISIS PERBANDINGAN METODE ARIMA DAN LEAST SQUARE UNTUK PREDIKSI HARGA EMAS : PENDEKATAN PROBABILISTIK DAN STATISTIK","authors":"Dita Anggelia, Y. Riti, Paulus William Siswanto","doi":"10.47080/simika.v7i1.3197","DOIUrl":null,"url":null,"abstract":"Gold, a precious metal renowned for its value in various sectors, including investment and jewelry, is often considered a secure asset within investment portfolios. However, its prices exhibit high volatility influenced by economic, geopolitical, and global financial factors. Previous research has focused on predictive methods to anticipate gold price movements. In recent years, heightened complexity and uncertainty, exacerbated by global factors such as economic shifts and the Covid-19 pandemic, emphasizes the urgency of accurate gold price predictions. This study comprehensively analyzes and compares the performance of Autoregressive Integrated Moving Average (ARIMA) and Ordinary Least Squares (OLS) in forecasting gold prices, utilizing statistical and probabilistic approaches. ARIMA excels in handling time series data, identifying complex patterns, and forecasting price changes based on historical trends. Conversely, OLS, a probabilistic method, stands out in adjusting linear models to gold price data, providing detailed insights into influencing factors. The research employs a 5-year gold price dataset (2018-2023) and evaluates the models' performance using Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). Results indicate OLS outperforms ARIMA, with lower MSE (45.79 vs. 284.83) and MAPE (0.0026 vs. 0.0066). This study contributes nuanced insights for market participants, investors, and researchers to comprehend commodity market behaviour, particularly in gold, emphasizing the importance of accurate prediction methods in strategic decision-making.","PeriodicalId":443734,"journal":{"name":"Jurnal Sistem Informasi dan Informatika (Simika)","volume":"2017 41","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem Informasi dan Informatika (Simika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47080/simika.v7i1.3197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gold, a precious metal renowned for its value in various sectors, including investment and jewelry, is often considered a secure asset within investment portfolios. However, its prices exhibit high volatility influenced by economic, geopolitical, and global financial factors. Previous research has focused on predictive methods to anticipate gold price movements. In recent years, heightened complexity and uncertainty, exacerbated by global factors such as economic shifts and the Covid-19 pandemic, emphasizes the urgency of accurate gold price predictions. This study comprehensively analyzes and compares the performance of Autoregressive Integrated Moving Average (ARIMA) and Ordinary Least Squares (OLS) in forecasting gold prices, utilizing statistical and probabilistic approaches. ARIMA excels in handling time series data, identifying complex patterns, and forecasting price changes based on historical trends. Conversely, OLS, a probabilistic method, stands out in adjusting linear models to gold price data, providing detailed insights into influencing factors. The research employs a 5-year gold price dataset (2018-2023) and evaluates the models' performance using Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). Results indicate OLS outperforms ARIMA, with lower MSE (45.79 vs. 284.83) and MAPE (0.0026 vs. 0.0066). This study contributes nuanced insights for market participants, investors, and researchers to comprehend commodity market behaviour, particularly in gold, emphasizing the importance of accurate prediction methods in strategic decision-making.
用于黄金价格预测的阿利玛法和最小平方法的比较分析:概率和统计方法
黄金是一种贵金属,因其在投资和珠宝等各个领域的价值而闻名,通常被视为投资组合中的安全资产。然而,受经济、地缘政治和全球金融因素的影响,黄金价格波动很大。以往的研究主要集中在预测金价走势的方法上。近年来,经济变化和 Covid-19 大流行病等全球因素加剧了金价的复杂性和不确定性,凸显了准确预测金价的紧迫性。本研究利用统计和概率方法,全面分析和比较了自回归综合移动平均法(ARIMA)和普通最小二乘法(OLS)在预测金价方面的表现。自回归整合移动平均法擅长处理时间序列数据、识别复杂模式以及根据历史趋势预测价格变化。相反,OLS 作为一种概率方法,在根据金价数据调整线性模型方面表现突出,能提供对影响因素的详细见解。研究采用了 5 年黄金价格数据集(2018-2023 年),并使用平均平方误差(MSE)和平均绝对百分比误差(MAPE)评估了模型的性能。结果表明,OLS 优于 ARIMA,MSE(45.79 vs. 284.83)和 MAPE(0.0026 vs. 0.0066)更低。这项研究为市场参与者、投资者和研究人员理解商品市场行为,尤其是黄金市场行为提供了细致入微的见解,强调了准确预测方法在战略决策中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信