Hydrodynamic Analysis Of Water Hammer Phenomena In Hydropower Stations Under Turbine Extreme Operating Conditions

Romuald Bagaragaza, Félicien Majoro, Jian Zhang, Claire Dusabemariya, P. Nsengiyumva, Concilie Mukamwambali, Ronaldo Muvunyi, Eric Mbabazi Buregeya
{"title":"Hydrodynamic Analysis Of Water Hammer Phenomena In Hydropower Stations Under Turbine Extreme Operating Conditions","authors":"Romuald Bagaragaza, Félicien Majoro, Jian Zhang, Claire Dusabemariya, P. Nsengiyumva, Concilie Mukamwambali, Ronaldo Muvunyi, Eric Mbabazi Buregeya","doi":"10.4314/gjpas.v30i1.7","DOIUrl":null,"url":null,"abstract":"This research article investigates transient hydraulic effects, particularly water hammer phenomena, in a hydropower plant (HEPP) through a comprehensive mathematical model and simulation analysis. Utilizing methods of characteristics and FORTRAN programming, the study develops a model that incorporates water hammer considerations, including friction, in the water conveyance system of the HEPP. The system layout encompasses an upstream reservoir, penstock, turbine unit, and downstream reservoir. The research explores the influence of guide vane closure and pressure regulating valve (PRV) opening and closing laws on pressure variations, mass oscillations, and water level fluctuations within the system. Numerical results indicate that PRV failure may not significantly impact turbine speed, but it results in excessive pressure oscillations in the spiral casing head, exceeding allowable pressure control values. The study identifies a critical PRV diameter of 0.6m, causing a maximum pressure in the spiral case of 370m, surpassing the acceptable limit of 250m, with a speed rise rate exceeding 50%. Conversely, a PRV diameter greater than or equal to 0.9m leads to unnecessary water energy loss. The findings emphasize the importance of carefully selecting PRV parameters to optimize system stability and efficiency. The study's comprehensive analysis provides valuable insights into the interplay of various parameters, contributing to a scientific basis for optimizing operational parameters and ensuring reliable and efficient hydropower plant performance. \n  \n ","PeriodicalId":12516,"journal":{"name":"Global Journal of Pure and Applied Sciences","volume":"32 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/gjpas.v30i1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research article investigates transient hydraulic effects, particularly water hammer phenomena, in a hydropower plant (HEPP) through a comprehensive mathematical model and simulation analysis. Utilizing methods of characteristics and FORTRAN programming, the study develops a model that incorporates water hammer considerations, including friction, in the water conveyance system of the HEPP. The system layout encompasses an upstream reservoir, penstock, turbine unit, and downstream reservoir. The research explores the influence of guide vane closure and pressure regulating valve (PRV) opening and closing laws on pressure variations, mass oscillations, and water level fluctuations within the system. Numerical results indicate that PRV failure may not significantly impact turbine speed, but it results in excessive pressure oscillations in the spiral casing head, exceeding allowable pressure control values. The study identifies a critical PRV diameter of 0.6m, causing a maximum pressure in the spiral case of 370m, surpassing the acceptable limit of 250m, with a speed rise rate exceeding 50%. Conversely, a PRV diameter greater than or equal to 0.9m leads to unnecessary water energy loss. The findings emphasize the importance of carefully selecting PRV parameters to optimize system stability and efficiency. The study's comprehensive analysis provides valuable insights into the interplay of various parameters, contributing to a scientific basis for optimizing operational parameters and ensuring reliable and efficient hydropower plant performance.    
水轮机极端运行条件下水电站水锤现象的水动力分析
本文通过综合数学模型和模拟分析,研究了水电站(HEPP)中的瞬态水力效应,特别是水锤现象。该研究利用特征方法和 FORTRAN 编程建立了一个模型,该模型考虑了水力发电厂输水系统中的水锤因素,包括摩擦因素。系统布局包括上游水库、水闸、水轮机组和下游水库。研究探讨了导叶关闭和压力调节阀(PRV)开闭规律对系统内压力变化、质量振荡和水位波动的影响。数值结果表明,压力调节阀失效可能不会对水轮机转速产生重大影响,但会导致蜗壳水头压力振荡过大,超过允许的压力控制值。研究确定 PRV 的临界直径为 0.6 米,这会导致蜗壳内的最大压力达到 370 米,超过 250 米的可接受极限,速度上升率超过 50%。相反,PRV 直径大于或等于 0.9m 则会导致不必要的水能损失。研究结果强调了精心选择 PRV 参数以优化系统稳定性和效率的重要性。研究的全面分析为了解各种参数的相互作用提供了宝贵的见解,为优化运行参数、确保水电站性能的可靠和高效提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信