Fuzzy algorithm-based active control method for vibration of a mechanical gear transmission system

IF 0.7 Q4 ENGINEERING, MECHANICAL
Yang Li, Guangzheng Wang, Shaozhu Wang, Hui Tan, Fazhan Yang
{"title":"Fuzzy algorithm-based active control method for vibration of a mechanical gear transmission system","authors":"Yang Li, Guangzheng Wang, Shaozhu Wang, Hui Tan, Fazhan Yang","doi":"10.21595/jve.2024.23595","DOIUrl":null,"url":null,"abstract":"The detached raft automatic frequency isolation system is a complicated system with high exceptionally nonlinear, high electromagnetic, and multi-source vibration modes. However, it generates a statistical method and it is hard to operate the organization. The fuzzy control algorithm, as an astute control method, can give a keen path to the active management of a complicated system of floating rafts. This study uses a system identification approach to construct mathematical models for a floating raft active vibration isolation system with discrete transfer work. The fuzzy model is used in tests and simulations controller is built using two contributions of acceleration and its variation, as well as a single result of control voltage. The control isolation system is a complicated system with many moving parts. A lot of moving parts profoundly nonlinear, high electromagnetic and multi-source vibration modes, generating a statistical method and it is hard to operate the organization. The fuzzy control algorithm, as a smart control method, can give a keen path to the active management of a sophisticated floating raft system. This research uses an identification strategy to construct a floating raft active vibration isolation technology discrete transfer work mathematical models. The fuzzy controller is then put together using two contributions: acceleration and variation, as well as a single outcome of control voltage for simulations and experiments research.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibroengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jve.2024.23595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The detached raft automatic frequency isolation system is a complicated system with high exceptionally nonlinear, high electromagnetic, and multi-source vibration modes. However, it generates a statistical method and it is hard to operate the organization. The fuzzy control algorithm, as an astute control method, can give a keen path to the active management of a complicated system of floating rafts. This study uses a system identification approach to construct mathematical models for a floating raft active vibration isolation system with discrete transfer work. The fuzzy model is used in tests and simulations controller is built using two contributions of acceleration and its variation, as well as a single result of control voltage. The control isolation system is a complicated system with many moving parts. A lot of moving parts profoundly nonlinear, high electromagnetic and multi-source vibration modes, generating a statistical method and it is hard to operate the organization. The fuzzy control algorithm, as a smart control method, can give a keen path to the active management of a sophisticated floating raft system. This research uses an identification strategy to construct a floating raft active vibration isolation technology discrete transfer work mathematical models. The fuzzy controller is then put together using two contributions: acceleration and variation, as well as a single outcome of control voltage for simulations and experiments research.
基于模糊算法的机械齿轮传动系统振动主动控制方法
分离式筏板自动频率隔离系统是一个复杂的系统,具有高异常非线性、高电磁性和多源振动模式。然而,它产生的是一种统计方法,很难进行组织操作。模糊控制算法作为一种精明的控制方法,可以为浮筏复杂系统的主动管理提供一条敏锐的路径。本研究采用系统识别方法,为具有离散传递功的浮筏主动隔振系统构建数学模型。测试中使用了模糊模型,并利用加速度及其变化的两个贡献以及控制电压的单一结果建立了模拟控制器。控制隔离系统是一个具有许多运动部件的复杂系统。大量运动部件具有深刻的非线性、高电磁性和多源振动模式,产生的统计方法和组织很难操作。模糊控制算法作为一种智能控制方法,可以为复杂浮筏系统的主动管理提供一条敏锐的路径。本研究采用识别策略,构建浮筏主动隔振技术离散传递工作数学模型。然后,利用加速度和变异两种贡献以及控制电压的单一结果将模糊控制器组合在一起,用于模拟和实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vibroengineering
Journal of Vibroengineering 工程技术-工程:机械
CiteScore
1.70
自引率
0.00%
发文量
97
审稿时长
4.5 months
期刊介绍: Journal of VIBROENGINEERING (JVE) ISSN 1392-8716 is a prestigious peer reviewed International Journal specializing in theoretical and practical aspects of Vibration Engineering. It is indexed in ESCI and other major databases. Published every 1.5 months (8 times yearly), the journal attracts attention from the International Engineering Community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信