Cation-mediated acid-base pairs for mild oxidative cleavage of lignocellulosic β-1,4-glycosidic bonds

Hongguang Zhang, Aiguo Wang, Ruixuan Zhao, Jinguang Hu
{"title":"Cation-mediated acid-base pairs for mild oxidative cleavage of lignocellulosic β-1,4-glycosidic bonds","authors":"Hongguang Zhang, Aiguo Wang, Ruixuan Zhao, Jinguang Hu","doi":"10.15376/biores.19.2.2736-2748","DOIUrl":null,"url":null,"abstract":"Solar-driven lignocellulosic biomass photoreforming holds significant promise for the production of value-added chemicals and fuels. The cleavage of the β-1,4-glycosidic bond is crucial for the effective conversion of lignocellulosic biomass. Polymeric carbon nitride (PCN) with acid-base pairs (M-C sites) is developed through heteroatomic carbon incorporation and cation insertion. It can be used for the gentle oxidation of cellobiose to monosaccharides, bypassing the formation of organic acids such as gluconic acid and glucaric acid. A series of different alkaline/alkaline-earth cation for regulation of acid-base pairs exhibited a negative correlation between β-1,4-glycosidic bond cleavage and cation radii. In particular, the introduction of short-radius cations (such as Li) into PCN enabled the formation of acid-base (M-C) pairs characterized by strong acidity. It also enhanced electron delocalization around M-C sites, potentially promoting the generation of reactive radicals in the reaction. Electron paramagnetic resonance analysis confirmed the presence of •OH radicals. The mild oxidative species, are the primary reactive radicals responsible for β-1,4-glycosidic bond cleavage in cellobiose. This study provides insightful evidence for the rational regulation of acid-base sites in facilitating β-1,4-glycosidic bond cleavage. It sheds light on the oxidative cleavage mechanisms integral to lignocellulosic biomass photoreforming, offering insights for advancing sustainable biomass conversion technologies.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"17 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioResources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15376/biores.19.2.2736-2748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven lignocellulosic biomass photoreforming holds significant promise for the production of value-added chemicals and fuels. The cleavage of the β-1,4-glycosidic bond is crucial for the effective conversion of lignocellulosic biomass. Polymeric carbon nitride (PCN) with acid-base pairs (M-C sites) is developed through heteroatomic carbon incorporation and cation insertion. It can be used for the gentle oxidation of cellobiose to monosaccharides, bypassing the formation of organic acids such as gluconic acid and glucaric acid. A series of different alkaline/alkaline-earth cation for regulation of acid-base pairs exhibited a negative correlation between β-1,4-glycosidic bond cleavage and cation radii. In particular, the introduction of short-radius cations (such as Li) into PCN enabled the formation of acid-base (M-C) pairs characterized by strong acidity. It also enhanced electron delocalization around M-C sites, potentially promoting the generation of reactive radicals in the reaction. Electron paramagnetic resonance analysis confirmed the presence of •OH radicals. The mild oxidative species, are the primary reactive radicals responsible for β-1,4-glycosidic bond cleavage in cellobiose. This study provides insightful evidence for the rational regulation of acid-base sites in facilitating β-1,4-glycosidic bond cleavage. It sheds light on the oxidative cleavage mechanisms integral to lignocellulosic biomass photoreforming, offering insights for advancing sustainable biomass conversion technologies.
阳离子介导的酸碱对木质纤维素β-1,4-糖苷键的温和氧化裂解作用
太阳能驱动的木质纤维素生物质光转化技术为生产高附加值化学品和燃料带来了巨大前景。β-1,4-糖苷键的裂解对于木质纤维素生物质的有效转化至关重要。通过加入杂原子碳和阳离子,开发出了具有酸碱对(M-C 位点)的聚合氮化碳(PCN)。它可用于将纤维生物糖温和氧化成单糖,绕过葡萄糖酸和葡萄糖二酸等有机酸的形成。一系列用于调节酸碱对的不同碱/碱土阳离子显示,β-1,4-糖苷键裂解与阳离子半径之间呈负相关。尤其是在 PCN 中引入短半径阳离子(如 Li)后,能够形成以强酸性为特征的酸碱(M-C)对。它还增强了 M-C 位点周围的电子析出,从而有可能促进反应中活性自由基的生成。电子顺磁共振分析证实了 -OH 自由基的存在。这些温和的氧化物是导致纤维二糖中β-1,4-糖苷键裂解的主要活性自由基。这项研究为合理调节酸碱位点以促进 β-1,4-糖苷键裂解提供了深刻的证据。它揭示了木质纤维素生物质光转化过程中不可或缺的氧化裂解机制,为推进可持续生物质转化技术提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信