Sidorela Caushaj, Giovanni Imberti, Henrique de Carvalho Pinheiro, M. Carello
{"title":"Electromagnetic Interaction Model between an Electric Motor and a Magnetorheological Brake","authors":"Sidorela Caushaj, Giovanni Imberti, Henrique de Carvalho Pinheiro, M. Carello","doi":"10.3390/designs8020025","DOIUrl":null,"url":null,"abstract":"This article focuses on modelling and validating a groundbreaking magnetorheological braking system. Addressing shortcomings in traditional automotive friction brake systems, including response delays, wear, and added mass from auxiliary components, the study employs a novel brake design combining mechanical and electrical elements for enhanced efficiency. Utilizing magnetorheological (MR) technology within a motor–brake system, the investigation explores the influence of external magnetic flux from the nearby motor on MR fluid movement, particularly under high-flux conditions. The evaluation of a high-magnetic-field mitigator is guided by simulated findings with the objective of resolving potential issues. An alternative method of resolving an interaction between an electric motor and a magnetorheological brake is presented. In addition, to test four configurations, multiple absorber materials are reviewed.","PeriodicalId":53150,"journal":{"name":"Designs","volume":"8 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1094","ListUrlMain":"https://doi.org/10.3390/designs8020025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This article focuses on modelling and validating a groundbreaking magnetorheological braking system. Addressing shortcomings in traditional automotive friction brake systems, including response delays, wear, and added mass from auxiliary components, the study employs a novel brake design combining mechanical and electrical elements for enhanced efficiency. Utilizing magnetorheological (MR) technology within a motor–brake system, the investigation explores the influence of external magnetic flux from the nearby motor on MR fluid movement, particularly under high-flux conditions. The evaluation of a high-magnetic-field mitigator is guided by simulated findings with the objective of resolving potential issues. An alternative method of resolving an interaction between an electric motor and a magnetorheological brake is presented. In addition, to test four configurations, multiple absorber materials are reviewed.