A Comprehensive Performance Evaluation of GGBS-Based Geopolymer Concrete Activated by a Rice Husk Ash-Synthesised Sodium Silicate Solution and Sodium Hydroxide
IF 4.6 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
J. Oti, B. Adeleke, Prageeth R. Mudiyanselage, John Kinuthia
{"title":"A Comprehensive Performance Evaluation of GGBS-Based Geopolymer Concrete Activated by a Rice Husk Ash-Synthesised Sodium Silicate Solution and Sodium Hydroxide","authors":"J. Oti, B. Adeleke, Prageeth R. Mudiyanselage, John Kinuthia","doi":"10.3390/recycling9020023","DOIUrl":null,"url":null,"abstract":"Commercial sodium hydroxide (NaOH) and sodium silicate (SS) are commonly used as alkaline activators in geopolymer concrete production despite concerns about their availability and associated CO2 emissions. This study employs an alternative alkaline activator (AA) synthesized from a sodium silicate alternative (SSA) solution derived from rice husk ash (RHA) and a 10 M sodium hydroxide solution. The initial phase established an optimal water-to-binder (W/B) ratio of 0.50, balancing workability and structural performance. Subsequent investigations explored the influence of the alkali/precursor (A/P) ratio on geopolymer concrete properties. A control mix uses ordinary Portland cement (OPC), while ground granulated blast-furnace slag (GGBS)-based geopolymer concrete—GPC mixes (GPC1, GPC2, GPC3, GPC4) vary the A/P ratios (0.2, 0.4, 0.6, 0.8) with a 1:1 ratio of sodium silicate to sodium hydroxide (SS: SH). The engineering performance was evaluated through a slump test, and unconfined compressive strength (UCS) and tensile splitting (TS) tests in accordance with the appropriate standards. The geopolymer mixes, excluding GPC3, offer suitable workability; UCS and TS, though lower than the control mix, peak at an A/P ratio of 0.4. Despite lower mechanical strength than OPC, geopolymers’ environmental benefits make them a valuable alternative. GPC2, with a 0.4 A/P ratio and 0.5 W/B (water to binder) ratio, is recommended for balanced workability and structural performance. Future research should focus on enhancing the mechanical properties of geopolymer concrete for sustainable, high-performance mixtures.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/recycling9020023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Commercial sodium hydroxide (NaOH) and sodium silicate (SS) are commonly used as alkaline activators in geopolymer concrete production despite concerns about their availability and associated CO2 emissions. This study employs an alternative alkaline activator (AA) synthesized from a sodium silicate alternative (SSA) solution derived from rice husk ash (RHA) and a 10 M sodium hydroxide solution. The initial phase established an optimal water-to-binder (W/B) ratio of 0.50, balancing workability and structural performance. Subsequent investigations explored the influence of the alkali/precursor (A/P) ratio on geopolymer concrete properties. A control mix uses ordinary Portland cement (OPC), while ground granulated blast-furnace slag (GGBS)-based geopolymer concrete—GPC mixes (GPC1, GPC2, GPC3, GPC4) vary the A/P ratios (0.2, 0.4, 0.6, 0.8) with a 1:1 ratio of sodium silicate to sodium hydroxide (SS: SH). The engineering performance was evaluated through a slump test, and unconfined compressive strength (UCS) and tensile splitting (TS) tests in accordance with the appropriate standards. The geopolymer mixes, excluding GPC3, offer suitable workability; UCS and TS, though lower than the control mix, peak at an A/P ratio of 0.4. Despite lower mechanical strength than OPC, geopolymers’ environmental benefits make them a valuable alternative. GPC2, with a 0.4 A/P ratio and 0.5 W/B (water to binder) ratio, is recommended for balanced workability and structural performance. Future research should focus on enhancing the mechanical properties of geopolymer concrete for sustainable, high-performance mixtures.