Norm inequalities for product of matrices

IF 0.6 Q3 MATHEMATICS
Ahmad Al-Natoor
{"title":"Norm inequalities for product of matrices","authors":"Ahmad Al-Natoor","doi":"10.1007/s44146-024-00121-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove some new norm inequalities for product of matrices. Among other results, we prove that if <i>A</i> and <i>B</i> are <i>n</i> <span>\\(\\times \\)</span> <i>n</i> complex matrices, then </p><div><div><span>$$\\begin{aligned} \\left| \\left| \\left| \\text { }\\left| AB^{*}\\right| ^{2}\\right| \\right| \\right| \\le \\min (\\left| \\left| \\left| B^{*}B\\right| \\right| \\right| \\left\\| A^{*}A\\right\\| ,\\left| \\left| \\left| A^{*}A\\right| \\right| \\right| \\left\\| B^{*}B\\right\\| ). \\end{aligned}$$</span></div></div><p>In particular, if <span>\\(\\left| \\left| \\left| \\cdot \\right| \\right| \\right| =\\left\\| \\cdot \\right\\| ,\\)</span> then </p><div><div><span>$$\\begin{aligned} \\left\\| AB^{*}\\right\\| ^{2}\\le \\left\\| A^{*}A\\right\\| \\left\\| B^{*}B\\right\\| , \\end{aligned}$$</span></div></div><p>which is known as the Cauchy–Schwarz inequality. Also, we prove that if <i>A</i> and <i>B</i> are <i>n</i> <span>\\(\\times \\)</span> <i>n</i> complex matrices,  then </p><div><div><span>$$\\begin{aligned} \\text { }\\left\\| AB^{*}\\right\\| ^{2}\\le w\\left( A^{*}AB^{*}B\\right) , \\end{aligned}$$</span></div></div><p>which is a refinement of the above Cauchy–Schwarz inequality. Here <span>\\( \\left| \\left| \\left| \\cdot \\right| \\right| \\right| ,\\)</span> <span>\\(\\left\\| \\cdot \\right\\| ,\\)</span> and <span>\\(w(\\cdot )\\)</span> denote any unitarily invariant norm, the spectral norm, and the numerical radius of matrices, respectively.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"153 - 160"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00121-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove some new norm inequalities for product of matrices. Among other results, we prove that if A and B are n \(\times \) n complex matrices, then

$$\begin{aligned} \left| \left| \left| \text { }\left| AB^{*}\right| ^{2}\right| \right| \right| \le \min (\left| \left| \left| B^{*}B\right| \right| \right| \left\| A^{*}A\right\| ,\left| \left| \left| A^{*}A\right| \right| \right| \left\| B^{*}B\right\| ). \end{aligned}$$

In particular, if \(\left| \left| \left| \cdot \right| \right| \right| =\left\| \cdot \right\| ,\) then

$$\begin{aligned} \left\| AB^{*}\right\| ^{2}\le \left\| A^{*}A\right\| \left\| B^{*}B\right\| , \end{aligned}$$

which is known as the Cauchy–Schwarz inequality. Also, we prove that if A and B are n \(\times \) n complex matrices,  then

$$\begin{aligned} \text { }\left\| AB^{*}\right\| ^{2}\le w\left( A^{*}AB^{*}B\right) , \end{aligned}$$

which is a refinement of the above Cauchy–Schwarz inequality. Here \( \left| \left| \left| \cdot \right| \right| \right| ,\) \(\left\| \cdot \right\| ,\) and \(w(\cdot )\) denote any unitarily invariant norm, the spectral norm, and the numerical radius of matrices, respectively.

矩阵积的规范不等式
本文证明了矩阵乘积的一些新的范数不等式。在其他结果中,我们证明了如果A和B是n \(\times \) n个复矩阵,则$$\begin{aligned} \left| \left| \left| \text { }\left| AB^{*}\right| ^{2}\right| \right| \right| \le \min (\left| \left| \left| B^{*}B\right| \right| \right| \left\| A^{*}A\right\| ,\left| \left| \left| A^{*}A\right| \right| \right| \left\| B^{*}B\right\| ). \end{aligned}$$,特别是如果\(\left| \left| \left| \cdot \right| \right| \right| =\left\| \cdot \right\| ,\)则$$\begin{aligned} \left\| AB^{*}\right\| ^{2}\le \left\| A^{*}A\right\| \left\| B^{*}B\right\| , \end{aligned}$$,这被称为Cauchy-Schwarz不等式。同时,我们证明了如果A和B是n \(\times \) n个复矩阵,则$$\begin{aligned} \text { }\left\| AB^{*}\right\| ^{2}\le w\left( A^{*}AB^{*}B\right) , \end{aligned}$$是上述Cauchy-Schwarz不等式的一种细化。这里\( \left| \left| \left| \cdot \right| \right| \right| ,\)\(\left\| \cdot \right\| ,\)和\(w(\cdot )\)分别表示矩阵的任意酉不变范数、谱范数和数值半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信