{"title":"Norm inequalities for product of matrices","authors":"Ahmad Al-Natoor","doi":"10.1007/s44146-024-00121-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove some new norm inequalities for product of matrices. Among other results, we prove that if <i>A</i> and <i>B</i> are <i>n</i> <span>\\(\\times \\)</span> <i>n</i> complex matrices, then </p><div><div><span>$$\\begin{aligned} \\left| \\left| \\left| \\text { }\\left| AB^{*}\\right| ^{2}\\right| \\right| \\right| \\le \\min (\\left| \\left| \\left| B^{*}B\\right| \\right| \\right| \\left\\| A^{*}A\\right\\| ,\\left| \\left| \\left| A^{*}A\\right| \\right| \\right| \\left\\| B^{*}B\\right\\| ). \\end{aligned}$$</span></div></div><p>In particular, if <span>\\(\\left| \\left| \\left| \\cdot \\right| \\right| \\right| =\\left\\| \\cdot \\right\\| ,\\)</span> then </p><div><div><span>$$\\begin{aligned} \\left\\| AB^{*}\\right\\| ^{2}\\le \\left\\| A^{*}A\\right\\| \\left\\| B^{*}B\\right\\| , \\end{aligned}$$</span></div></div><p>which is known as the Cauchy–Schwarz inequality. Also, we prove that if <i>A</i> and <i>B</i> are <i>n</i> <span>\\(\\times \\)</span> <i>n</i> complex matrices, then </p><div><div><span>$$\\begin{aligned} \\text { }\\left\\| AB^{*}\\right\\| ^{2}\\le w\\left( A^{*}AB^{*}B\\right) , \\end{aligned}$$</span></div></div><p>which is a refinement of the above Cauchy–Schwarz inequality. Here <span>\\( \\left| \\left| \\left| \\cdot \\right| \\right| \\right| ,\\)</span> <span>\\(\\left\\| \\cdot \\right\\| ,\\)</span> and <span>\\(w(\\cdot )\\)</span> denote any unitarily invariant norm, the spectral norm, and the numerical radius of matrices, respectively.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"153 - 160"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00121-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove some new norm inequalities for product of matrices. Among other results, we prove that if A and B are n\(\times \)n complex matrices, then
which is a refinement of the above Cauchy–Schwarz inequality. Here \( \left| \left| \left| \cdot \right| \right| \right| ,\)\(\left\| \cdot \right\| ,\) and \(w(\cdot )\) denote any unitarily invariant norm, the spectral norm, and the numerical radius of matrices, respectively.