Optimized Ray-Based Method for Workspace Determination of Kinematic Redundant Manipulators

Angelica Ginnante, Stéphane Caro, Enrico Simetti, François Leborne
{"title":"Optimized Ray-Based Method for Workspace Determination of Kinematic Redundant Manipulators","authors":"Angelica Ginnante, Stéphane Caro, Enrico Simetti, François Leborne","doi":"10.1115/1.4065071","DOIUrl":null,"url":null,"abstract":"\n Determining the workspace of a robotic manipulator is highly significant for knowing its abilities and planning the robot application. Several techniques exist for robot workspace determination. However, these methods are usually affected by computational redundancy, like in the Monte Carlo based method case, and their implementation can be complex. The workspace analysis of kinematic redundant manipulators is even more complex. This paper proposes a kinematically optimized ray-based workspace determination algorithm based on a simple idea and not affected by computational redundancy. The proposed method can be applied to any serial robot but is tested only on spatial kinematic redundant robots. The results show how the approach can correctly determine the robot workspace boundaries in a short time. Then, the correctness and computational time of the proposed optimized ray-based method are compared to pseudo-inverse Jacobian ray-based and Monte Carlo methods. The comparison demonstrates that the proposed method has better results in a shorter time. Finally, some limitations of the proposed algorithm are discussed.","PeriodicalId":508172,"journal":{"name":"Journal of Mechanisms and Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the workspace of a robotic manipulator is highly significant for knowing its abilities and planning the robot application. Several techniques exist for robot workspace determination. However, these methods are usually affected by computational redundancy, like in the Monte Carlo based method case, and their implementation can be complex. The workspace analysis of kinematic redundant manipulators is even more complex. This paper proposes a kinematically optimized ray-based workspace determination algorithm based on a simple idea and not affected by computational redundancy. The proposed method can be applied to any serial robot but is tested only on spatial kinematic redundant robots. The results show how the approach can correctly determine the robot workspace boundaries in a short time. Then, the correctness and computational time of the proposed optimized ray-based method are compared to pseudo-inverse Jacobian ray-based and Monte Carlo methods. The comparison demonstrates that the proposed method has better results in a shorter time. Finally, some limitations of the proposed algorithm are discussed.
基于光线的优化方法,用于确定运动冗余机械手的工作空间
确定机器人机械手的工作空间对了解其能力和规划机器人应用意义重大。目前有几种确定机器人工作空间的技术。不过,这些方法通常会受到计算冗余的影响,比如基于蒙特卡罗方法的情况,而且实施起来可能很复杂。运动学冗余机械手的工作空间分析更为复杂。本文提出了一种基于射线的运动优化工作空间确定算法,该算法基于简单的思想,不受计算冗余的影响。所提出的方法可应用于任何序列机器人,但仅针对空间运动学冗余机器人进行了测试。结果表明,该方法能在短时间内正确确定机器人工作区的边界。然后,将所提出的基于射线的优化方法的正确性和计算时间与基于射线的伪逆雅各布方法和蒙特卡罗方法进行了比较。比较结果表明,提出的方法能在更短的时间内获得更好的结果。最后,讨论了所提算法的一些局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信