P-mean (mu1,mu2)-pseudo almost periodic processes and application to integro-differential stochastic evolution equations

IF 0.8 4区 数学 Q2 MATHEMATICS
Moez Ayachi, Syed Abbas
{"title":"P-mean (mu1,mu2)-pseudo almost periodic processes and application to integro-differential stochastic evolution equations","authors":"Moez Ayachi, Syed Abbas","doi":"10.58997/ejde.2024.24","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the existence and stability of p-mean \\((\\mu_1,\\mu_2)\\)-pseudo almost periodic solutions for a class of non-autonomous integro-differential stochastic evolution equations in a real separable Hilbert space. Using stochastic analysis techniques and the contraction mapping principle, we prove the existence and uniqueness of p-mean \\((\\mu_1,\\mu_2)\\)-pseudo almost periodic solutions. We also provide sufficient conditions for the stability of these solutions. Finally, we present three examples with numerical simulations to illustrate the significance of the main findings. \nFor mor information see https://ejde.math.txstate.edu/Volumes/2024/24/abstr.html \n ","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate the existence and stability of p-mean \((\mu_1,\mu_2)\)-pseudo almost periodic solutions for a class of non-autonomous integro-differential stochastic evolution equations in a real separable Hilbert space. Using stochastic analysis techniques and the contraction mapping principle, we prove the existence and uniqueness of p-mean \((\mu_1,\mu_2)\)-pseudo almost periodic solutions. We also provide sufficient conditions for the stability of these solutions. Finally, we present three examples with numerical simulations to illustrate the significance of the main findings. For mor information see https://ejde.math.txstate.edu/Volumes/2024/24/abstr.html  
P-均值(mu1,mu2)-伪几乎周期过程及其在积分微分随机演化方程中的应用
本文研究了实可分离希尔伯特空间中一类非自治整微分随机演化方程的p-mean ((\mu_1,\mu_2)\)-伪近周期解的存在性和稳定性。利用随机分析技术和收缩映射原理,我们证明了 p-mean ((\mu_1,\mu_2))-伪几乎周期解的存在性和唯一性。我们还为这些解的稳定性提供了充分条件。最后,我们用三个数值模拟的例子来说明主要发现的意义。更多信息,请访问 https://ejde.math.txstate.edu/Volumes/2024/24/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信