Artificial intelligence applied to estimate soybean yield

Wesley Prado Leão dos Santos, Mariana Bonini Silva, Alfredo Bonini Neto, C. Bonini, Adônis Moreira
{"title":"Artificial intelligence applied to estimate soybean yield","authors":"Wesley Prado Leão dos Santos, Mariana Bonini Silva, Alfredo Bonini Neto, C. Bonini, Adônis Moreira","doi":"10.18011/bioeng.2024.v18.1211","DOIUrl":null,"url":null,"abstract":"The application of mathematical models using biotic and abiotic factors for the efficient use of fertilizers to obtain maximum economic productivity can be an important tool to minimize the cost of soybean (Glycine max (L.) Merr.) grain yield. In this sense, using Artificial Neural Networks (ANN) is an important tool in studies involving optimization. This study aimed to estimate soybean yield in Luiziana, Paraná state, Brazil, by considering two growing seasons and an Artificial Neural Network (ANN) as a function of the morphological and nutritional parameters of the plants. Results reveal a well-trained network, with a margin of error of approximately 10-5, thus acting as a tool to estimate soybean data. For the phases, model validation and network test, i.e., data that were not part of the training (validation), the errors averaged 10-3. These results indicate that our approach is adequate for optimizing soybean yield estimates in the area studied.","PeriodicalId":32292,"journal":{"name":"Revista Brasileira de Engenharia de Biossistemas","volume":"77 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Engenharia de Biossistemas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18011/bioeng.2024.v18.1211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of mathematical models using biotic and abiotic factors for the efficient use of fertilizers to obtain maximum economic productivity can be an important tool to minimize the cost of soybean (Glycine max (L.) Merr.) grain yield. In this sense, using Artificial Neural Networks (ANN) is an important tool in studies involving optimization. This study aimed to estimate soybean yield in Luiziana, Paraná state, Brazil, by considering two growing seasons and an Artificial Neural Network (ANN) as a function of the morphological and nutritional parameters of the plants. Results reveal a well-trained network, with a margin of error of approximately 10-5, thus acting as a tool to estimate soybean data. For the phases, model validation and network test, i.e., data that were not part of the training (validation), the errors averaged 10-3. These results indicate that our approach is adequate for optimizing soybean yield estimates in the area studied.
应用人工智能估算大豆产量
应用数学模型,利用生物和非生物因素有效使用肥料,以获得最大的经济生产率,是使大豆(Glycine max (L.) Merr.)谷物产量成本最小化的重要工具。从这个意义上讲,使用人工神经网络(ANN)是涉及优化研究的重要工具。本研究旨在通过考虑两个生长季节和人工神经网络 (ANN) 作为植物形态和营养参数的函数,估算巴西巴拉那州 Luiziana 的大豆产量。结果表明,该网络训练有素,误差范围约为 10-5,因此可作为估算大豆数据的工具。在模型验证和网络测试阶段,即不属于训练(验证)的数据,误差平均为 10-3。这些结果表明,我们的方法足以优化所研究地区的大豆产量估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
24
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信