An Analysis of Split-Ring Resonators and Potential Barcode Application

Chu Shen Ong, K. Yeap, Zhi Lin Chong, H. Nisar
{"title":"An Analysis of Split-Ring Resonators and Potential Barcode Application","authors":"Chu Shen Ong, K. Yeap, Zhi Lin Chong, H. Nisar","doi":"10.33093/jetap.2024.6.1.10","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of various split-ring resonator (SRR) configurations coupled with coplanar waveguides (CPW). Three distinct resonant structures are presented, namely, the S-shaped split-ring resonator (S-SRR), the conventional split-ring resonator (SRR), and a pair of SRR. Among the examined resonant structures, it is observed that the S-SRR exhibits the smallest electrical size with the corresponding resonant frequency of 1.37 GHz, while the conventional SRR has the largest electrical size with the corresponding resonant frequency of 3.34 GHz. On the other hand, the resonant frequency of a dual SRR is 2.37 GHz. However, the transmission coefficient of a dual SRR is -11.43 dB, which is higher than S-SRR (-10.02 dB) and SRR (-8.18 dB). Furthermore, this study extends the analysis between a square dual SRR and a circular dual SRR with retained area. The square SRR demonstrates a lower resonance frequency (2.23 GHz) relative to its circular counterpart (2.37 GHz). The comparison also shows that the transmission coefficient of the square configuration is -13.88 dB, which is higher than its circular counterpart (-11.43 dB). The realization of a barcode application is achieved by loading multiple S-shaped split ring resonators (S-SRRs) with varying geometric parameters adjacently onto the transmission line. By individually rotating each of these S-SRRs, it becomes possible to alter the notch magnitude, thereby positioning it within a specific designated range corresponding to a particular code. In the case of a configuration involving rotations of (0°, 45°, 90°, 0°, 45°, 90°), this approach results in the creation of a barcode denoted as \"100 010 000 100 011 000\". This methodology enables the encoding of information in the form of distinctive resonant responses, providing a versatile and compact means of realizing barcode applications.","PeriodicalId":441201,"journal":{"name":"Journal of Engineering Technology and Applied Physics","volume":"4 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Technology and Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33093/jetap.2024.6.1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an analysis of various split-ring resonator (SRR) configurations coupled with coplanar waveguides (CPW). Three distinct resonant structures are presented, namely, the S-shaped split-ring resonator (S-SRR), the conventional split-ring resonator (SRR), and a pair of SRR. Among the examined resonant structures, it is observed that the S-SRR exhibits the smallest electrical size with the corresponding resonant frequency of 1.37 GHz, while the conventional SRR has the largest electrical size with the corresponding resonant frequency of 3.34 GHz. On the other hand, the resonant frequency of a dual SRR is 2.37 GHz. However, the transmission coefficient of a dual SRR is -11.43 dB, which is higher than S-SRR (-10.02 dB) and SRR (-8.18 dB). Furthermore, this study extends the analysis between a square dual SRR and a circular dual SRR with retained area. The square SRR demonstrates a lower resonance frequency (2.23 GHz) relative to its circular counterpart (2.37 GHz). The comparison also shows that the transmission coefficient of the square configuration is -13.88 dB, which is higher than its circular counterpart (-11.43 dB). The realization of a barcode application is achieved by loading multiple S-shaped split ring resonators (S-SRRs) with varying geometric parameters adjacently onto the transmission line. By individually rotating each of these S-SRRs, it becomes possible to alter the notch magnitude, thereby positioning it within a specific designated range corresponding to a particular code. In the case of a configuration involving rotations of (0°, 45°, 90°, 0°, 45°, 90°), this approach results in the creation of a barcode denoted as "100 010 000 100 011 000". This methodology enables the encoding of information in the form of distinctive resonant responses, providing a versatile and compact means of realizing barcode applications.
分环谐振器和潜在条形码应用分析
本文分析了与共面波导(CPW)耦合的各种分环谐振器(SRR)配置。本文介绍了三种不同的谐振结构,即 S 形分裂环谐振器 (S-SRR)、传统分裂环谐振器 (SRR) 和一对 SRR。在所研究的谐振结构中,S-SRR 的电气尺寸最小,相应的谐振频率为 1.37 GHz,而传统 SRR 的电气尺寸最大,相应的谐振频率为 3.34 GHz。另一方面,双 SRR 的谐振频率为 2.37 千兆赫。然而,双 SRR 的传输系数为 -11.43 dB,高于 S-SRR(-10.02 dB)和 SRR(-8.18 dB)。此外,本研究还扩展了方形双 SRR 和有保留区域的圆形双 SRR 之间的分析。方形 SRR 的谐振频率(2.23 GHz)低于圆形 SRR(2.37 GHz)。比较还显示,方形配置的传输系数为 -13.88 dB,高于圆形配置(-11.43 dB)。条形码应用是通过在传输线上相邻加载多个几何参数各不相同的 S 形分裂环谐振器(S-SRR)来实现的。通过单独旋转这些 S-SRR 中的每一个,可以改变陷波幅度,从而将其定位在与特定代码相对应的指定范围内。在涉及(0°、45°、90°、0°、45°、90°)旋转配置的情况下,这种方法可以创建一个条形码,标记为 "100 010 000 100 011 000"。这种方法能够以独特的共振响应形式对信息进行编码,为实现条形码应用提供了一种多用途的紧凑型方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信