Initial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions linked with Horadam Polynomials

S. R. Swamy, Yogesh Nanjadeva, Pankaj Kumar, Tarikere Manjunath Sushma
{"title":"Initial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions linked with Horadam Polynomials","authors":"S. R. Swamy, Yogesh Nanjadeva, Pankaj Kumar, Tarikere Manjunath Sushma","doi":"10.34198/ejms.14224.443457","DOIUrl":null,"url":null,"abstract":"In this work, we investigate some subclasses of bi-univalent and regular functions associated with Horadam polynomials in the open unit disk $\\mathfrak{U}=\\{\\varsigma\\in\\mathbb{C}:|\\varsigma| <1\\}$. For functions that belong to these subclasses, we find bounds on their initial coefficients. The functional problem of Fekete-Szegö is also examined. Along with presenting some new results, we also talk about pertinent connections to earlier findings.","PeriodicalId":507233,"journal":{"name":"Earthline Journal of Mathematical Sciences","volume":"12 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthline Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34198/ejms.14224.443457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate some subclasses of bi-univalent and regular functions associated with Horadam polynomials in the open unit disk $\mathfrak{U}=\{\varsigma\in\mathbb{C}:|\varsigma| <1\}$. For functions that belong to these subclasses, we find bounds on their initial coefficients. The functional problem of Fekete-Szegö is also examined. Along with presenting some new results, we also talk about pertinent connections to earlier findings.
与霍拉丹多项式相关联的双等价函数新子类的初始系数边界分析
在这项工作中,我们研究了开放单位盘 $\mathfrak{U}=\{\varsigma\in\mathbb{C}:|\varsigma| <1\}$ 中与霍拉丹多项式相关的一些双等价正则函数子类。对于属于这些子类的函数,我们找到了它们初始系数的边界。我们还研究了 Fekete-Szegö 的函数问题。在提出一些新结果的同时,我们还讨论了与早期发现的相关联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信