{"title":"Compact Series-fed Circularly-polarized Patch Array basedon Microstrip Line","authors":"Gengming Wei, Le Chang, Yu Wu","doi":"10.13052/2023.aces.j.381002","DOIUrl":null,"url":null,"abstract":"A compact single-layer circularly polarized (CP) antenna array is proposed in this paper for 5G/6G applications. The conventional microstrip line is modified as a feeding network by periodically and alternatively loading field blocking stubs, producing a linearly polarized in-phase radiative field aperture. By adding CP corner-truncated patches beside these in-phase fields, a linear high-gain CP antenna array excited by a single feed is obtained. The feasibility of the proposed design is demonstrated through the fabrication and measurement of a 16-element linear array. The results indicate that the 3 dB axial ratio bandwidth is 3.5% (19.60∼20.30 GHz), the -10 dB impedance bandwidth totally covers the 3 dB axial ratio bandwidth, and the peak realized gain is 14.9 dBi under an antenna length of 5.69λ0. This proposed strategy provides a very compact antenna structure to achieve high-gain CP radiation without the requirement of impedance transformers, phase shifters, and open-stop-band suppressing measures. Moreover, the antenna has a per-unit-length CP gain of 5.5/λ0, which is superior to many single-layer high-gain CPantennas.","PeriodicalId":250668,"journal":{"name":"The Applied Computational Electromagnetics Society Journal (ACES)","volume":"16 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Applied Computational Electromagnetics Society Journal (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.381002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A compact single-layer circularly polarized (CP) antenna array is proposed in this paper for 5G/6G applications. The conventional microstrip line is modified as a feeding network by periodically and alternatively loading field blocking stubs, producing a linearly polarized in-phase radiative field aperture. By adding CP corner-truncated patches beside these in-phase fields, a linear high-gain CP antenna array excited by a single feed is obtained. The feasibility of the proposed design is demonstrated through the fabrication and measurement of a 16-element linear array. The results indicate that the 3 dB axial ratio bandwidth is 3.5% (19.60∼20.30 GHz), the -10 dB impedance bandwidth totally covers the 3 dB axial ratio bandwidth, and the peak realized gain is 14.9 dBi under an antenna length of 5.69λ0. This proposed strategy provides a very compact antenna structure to achieve high-gain CP radiation without the requirement of impedance transformers, phase shifters, and open-stop-band suppressing measures. Moreover, the antenna has a per-unit-length CP gain of 5.5/λ0, which is superior to many single-layer high-gain CPantennas.