{"title":"Jumping droplets","authors":"Jonathan B. Boreyko","doi":"10.1002/dro2.105","DOIUrl":null,"url":null,"abstract":"<p>When microdroplets with quasi-spherical contact angles coalesce together on a low-adhesion substrate, the capillary-inertial expansion of the liquid bridge induces a dramatic out-of-plane jumping event due to symmetry breaking. From the onset of merging, droplet jumping initiates after a capillary-inertial time scale of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>t</mi>\n \n <mrow>\n <mspace></mspace>\n \n <mtext>ci</mtext>\n </mrow>\n </msub>\n \n <mo>∼</mo>\n \n <mn>1</mn>\n \n <mo>–</mo>\n <mspace></mspace>\n \n <mn>100</mn>\n </mrow>\n </mrow>\n <annotation> ${t}_{\\text{ci}}\\sim 1\\mbox{--}\\,100$</annotation>\n </semantics></math> μs with characteristic jumping speeds of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mi>j</mi>\n </msub>\n \n <mo>∼</mo>\n \n <mn>0.1</mn>\n </mrow>\n </mrow>\n <annotation> ${v}_{{\\rm{j}}}\\sim 0.1$</annotation>\n </semantics></math> m/s. This coalescence-induced jumping-droplet effect is most commonly observed among a population of growing dew droplets on a superhydrophobic condenser, but can also occur by colliding deposited droplets together or during droplet sliding on fog harvesters. In this review, we cover the historical development of capillary-inertial jumping droplets, summarize the decade-long effort to rationalize the ultra-low energy conversion efficiency and critical droplet size of the phenomenon, and then present 15 variations on a theme of jumping. Capillary-inertial jumping droplets are not only a visceral illustration of the surprising power of surface tension at the microscale but they also have the potential to enhance phase-change heat transfer, enable self-cleaning surfaces, combat frost formation, harvest energy, and govern the rate of disease spread for wheat crops.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.105","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When microdroplets with quasi-spherical contact angles coalesce together on a low-adhesion substrate, the capillary-inertial expansion of the liquid bridge induces a dramatic out-of-plane jumping event due to symmetry breaking. From the onset of merging, droplet jumping initiates after a capillary-inertial time scale of μs with characteristic jumping speeds of order m/s. This coalescence-induced jumping-droplet effect is most commonly observed among a population of growing dew droplets on a superhydrophobic condenser, but can also occur by colliding deposited droplets together or during droplet sliding on fog harvesters. In this review, we cover the historical development of capillary-inertial jumping droplets, summarize the decade-long effort to rationalize the ultra-low energy conversion efficiency and critical droplet size of the phenomenon, and then present 15 variations on a theme of jumping. Capillary-inertial jumping droplets are not only a visceral illustration of the surprising power of surface tension at the microscale but they also have the potential to enhance phase-change heat transfer, enable self-cleaning surfaces, combat frost formation, harvest energy, and govern the rate of disease spread for wheat crops.