A Curb-Detection Network with a Tri-Plane BEV Encoder Module for Autonomous Delivery Vehicles

Vehicles Pub Date : 2024-03-16 DOI:10.3390/vehicles6010024
Lu Zhang, Jinzhu Wang, Xichan Zhu, Zhixiong Ma
{"title":"A Curb-Detection Network with a Tri-Plane BEV Encoder Module for Autonomous Delivery Vehicles","authors":"Lu Zhang, Jinzhu Wang, Xichan Zhu, Zhixiong Ma","doi":"10.3390/vehicles6010024","DOIUrl":null,"url":null,"abstract":"Curb detection tasks play a crucial role in the perception of the autonomous driving environment for logistics vehicles. With the popularity of multi-modal sensors under the BEV (Bird’s Eye View) paradigm, curb detection tasks are increasingly being integrated into multi-task perception networks, achieving robust detection results. This paper modifies and integrates the tri-plane spatial feature representation method of the EG3D network from the field of 3D reconstruction into a BEV-based multi-modal sensor detection network, including LiDAR, pinhole cameras, and fisheye cameras. The system collects a total of 24,350 frames of data under real road conditions for experimentation, proving the effectiveness of the proposed method.","PeriodicalId":509694,"journal":{"name":"Vehicles","volume":"99 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles6010024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Curb detection tasks play a crucial role in the perception of the autonomous driving environment for logistics vehicles. With the popularity of multi-modal sensors under the BEV (Bird’s Eye View) paradigm, curb detection tasks are increasingly being integrated into multi-task perception networks, achieving robust detection results. This paper modifies and integrates the tri-plane spatial feature representation method of the EG3D network from the field of 3D reconstruction into a BEV-based multi-modal sensor detection network, including LiDAR, pinhole cameras, and fisheye cameras. The system collects a total of 24,350 frames of data under real road conditions for experimentation, proving the effectiveness of the proposed method.
带有三平面 BEV 编码器模块的路缘检测网络,适用于自主配送车辆
路缘检测任务在感知物流车辆的自动驾驶环境中发挥着至关重要的作用。随着多模态传感器在 BEV(鸟瞰)范式下的普及,路缘检测任务正越来越多地被集成到多任务感知网络中,从而实现稳健的检测结果。本文将三维重建领域 EG3D 网络的三平面空间特征表示方法修改并集成到基于 BEV 的多模态传感器检测网络中,包括激光雷达、针孔摄像机和鱼眼摄像机。该系统在真实路况下共收集了 24,350 帧数据进行实验,证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信