Recent Progress in Turning Waste into Catalysts for Green Syntheses

Konstantin Wink, Ingo Hartmann
{"title":"Recent Progress in Turning Waste into Catalysts for Green Syntheses","authors":"Konstantin Wink, Ingo Hartmann","doi":"10.3390/suschem5010003","DOIUrl":null,"url":null,"abstract":"The recycling of catalysts has emerged as a key solution to address environmental pollution and the scarcity of natural resources. This dynamic is further reinforced by the growing industrial demand for catalysts and the urgent need to transition to more sustainable production methods. In the context of chemical transformations, the direct reuse of recycled catalysts for chemical applications in particular represents an elegant route towards greener syntheses. In this article, we review recent advancements in the recycling of homogeneous and heterogeneous catalysts since 2020, emphasizing the utilization of waste-derived catalysts for chemical reactions. In particular, we consider three primary sources of waste: electronic waste, spent lithium-ion batteries, and industrial wastewater. For each of these waste streams, different extraction methods are explored for their effectiveness in obtaining catalysts suitable for a broad spectrum of chemical reactions. These presented studies emphasize the potential of recycled catalysts to contribute to a sustainable and waste-efficient future.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"37 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/suschem5010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recycling of catalysts has emerged as a key solution to address environmental pollution and the scarcity of natural resources. This dynamic is further reinforced by the growing industrial demand for catalysts and the urgent need to transition to more sustainable production methods. In the context of chemical transformations, the direct reuse of recycled catalysts for chemical applications in particular represents an elegant route towards greener syntheses. In this article, we review recent advancements in the recycling of homogeneous and heterogeneous catalysts since 2020, emphasizing the utilization of waste-derived catalysts for chemical reactions. In particular, we consider three primary sources of waste: electronic waste, spent lithium-ion batteries, and industrial wastewater. For each of these waste streams, different extraction methods are explored for their effectiveness in obtaining catalysts suitable for a broad spectrum of chemical reactions. These presented studies emphasize the potential of recycled catalysts to contribute to a sustainable and waste-efficient future.
将废弃物转化为绿色合成催化剂的最新进展
催化剂的回收利用已成为解决环境污染和自然资源稀缺问题的一个关键解决方案。工业对催化剂的需求不断增长,迫切需要过渡到更可持续的生产方法,这进一步加强了这种态势。在化学转化方面,回收催化剂在化学应用中的直接再利用是实现绿色合成的一条有效途径。在本文中,我们回顾了自 2020 年以来均相催化剂和异相催化剂回收利用方面的最新进展,重点介绍了化学反应中废弃催化剂的利用。我们特别考虑了三种主要废物来源:电子废物、废锂离子电池和工业废水。针对每种废物流,我们都探索了不同的萃取方法,以了解其在获得适用于各种化学反应的催化剂方面的有效性。这些研究强调了回收催化剂的潜力,有助于实现可持续和废物效率高的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信