Biodegradation of Chlorpyrifos by Microbes: A Review

Rubiyatno, Aulia Maulana, Jovale Vincent V. Tongco, Arma Yulisa, Sang Hyeok Park, Md Abu Hanifa Jannat, Rega Permana, Ocean Thakali, Michael Lie, Aouatif Fahssi, Ouahiba Aziez, Camilo Bastidas
{"title":"Biodegradation of Chlorpyrifos by Microbes: A Review","authors":"Rubiyatno, Aulia Maulana, Jovale Vincent V. Tongco, Arma Yulisa, Sang Hyeok Park, Md Abu Hanifa Jannat, Rega Permana, Ocean Thakali, Michael Lie, Aouatif Fahssi, Ouahiba Aziez, Camilo Bastidas","doi":"10.53623/tasp.v4i1.403","DOIUrl":null,"url":null,"abstract":"Chlorpyrifos (CP) is a widely used organophosphate pesticide known for its recalcitrant nature, raising concerns about potential ecological and health impacts due to its toxicity. Many plants and animals are contaminated with this pesticide. Microbial biodegradation offers an environmentally friendly and effective method to remove CP from the environment and mitigate its impacts, especially given its low cost, particularly when bioremediation is conducted on-site. Different types of microbial species have been found to function under various environmental conditions, with some, like Pseudomonas nitroreducens PS-2 and Pseudomonas aeruginosa (NCIM 2074), showing promising results with degradation rates of up to 100%. However, challenges exist, such as partial degradation caused by the presence of metabolites, and the recalcitrant nature of CP, which can impede microbes' ability to effectively degrade its hydrocarbon ring. Overall, a combination of approaches, such as microbial and algal methods, or the discovery of new microbial strains, can help overcome these challenges and further enhance the long-term viability of this technique.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":"24 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Aquatic and Soil Pollution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53623/tasp.v4i1.403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chlorpyrifos (CP) is a widely used organophosphate pesticide known for its recalcitrant nature, raising concerns about potential ecological and health impacts due to its toxicity. Many plants and animals are contaminated with this pesticide. Microbial biodegradation offers an environmentally friendly and effective method to remove CP from the environment and mitigate its impacts, especially given its low cost, particularly when bioremediation is conducted on-site. Different types of microbial species have been found to function under various environmental conditions, with some, like Pseudomonas nitroreducens PS-2 and Pseudomonas aeruginosa (NCIM 2074), showing promising results with degradation rates of up to 100%. However, challenges exist, such as partial degradation caused by the presence of metabolites, and the recalcitrant nature of CP, which can impede microbes' ability to effectively degrade its hydrocarbon ring. Overall, a combination of approaches, such as microbial and algal methods, or the discovery of new microbial strains, can help overcome these challenges and further enhance the long-term viability of this technique.
微生物对毒死蜱的生物降解:综述
毒死蜱(CP)是一种广泛使用的有机磷农药,以其顽固性而闻名,其毒性引起了人们对其潜在生态和健康影响的关注。许多动植物都受到这种农药的污染。微生物生物降解提供了一种从环境中清除氯化石蜡并减轻其影响的环保而有效的方法,特别是考虑到其低成本,尤其是在现场进行生物修复时。已发现不同类型的微生物物种可在各种环境条件下发挥作用,其中一些微生物(如硝化还原假单胞菌 PS-2 和铜绿假单胞菌(NCIM 2074))显示出良好的效果,降解率高达 100%。不过,也存在一些挑战,如代谢物的存在导致部分降解,以及氯化石蜡的难降解特性会阻碍微生物有效降解其碳氢环的能力。总之,综合采用多种方法,如微生物和藻类方法,或发现新的微生物菌株,有助于克服这些挑战,进一步提高这种技术的长期可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信