{"title":"Internal heat sources in large strain thermo-elasto-plasticity – theory and finite element simulations","authors":"B. Wcisło, M. Mucha, J. Pamin","doi":"10.15632/jtam-pl/185614","DOIUrl":null,"url":null,"abstract":"The paper deals with theoretical description and numerical simulations of internal sources of heating/cooling in large strain thermo-elasticity and thermo-elasto-plasticity. The attention is paid to metallic materials which undergo cooling in the elastic range and heating during plastic yielding. Theoretical description can be derived from thermodynamic considerations based on the first and second laws of thermodynamics and assumed forms of the Helmholtz free energy. Numerical simulations within the Finite Element Method are performed for a uniaxial tension test and elongation of a dogbone-shape sample. For the latter specimen, a comparison with experimental results is performed, and good agreement is obtained.","PeriodicalId":503677,"journal":{"name":"Journal of Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15632/jtam-pl/185614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper deals with theoretical description and numerical simulations of internal sources of heating/cooling in large strain thermo-elasticity and thermo-elasto-plasticity. The attention is paid to metallic materials which undergo cooling in the elastic range and heating during plastic yielding. Theoretical description can be derived from thermodynamic considerations based on the first and second laws of thermodynamics and assumed forms of the Helmholtz free energy. Numerical simulations within the Finite Element Method are performed for a uniaxial tension test and elongation of a dogbone-shape sample. For the latter specimen, a comparison with experimental results is performed, and good agreement is obtained.