OSCILLATORY BEHAVIOR OF SOLUTIONS OF FRACTIONAL MATRIX DIFFERENTIAL EQUATIONS

N. Sasikala
{"title":"OSCILLATORY BEHAVIOR OF SOLUTIONS OF FRACTIONAL MATRIX DIFFERENTIAL EQUATIONS","authors":"N. Sasikala","doi":"10.26782/jmcms.2024.03.00004","DOIUrl":null,"url":null,"abstract":"In this article, new oscillation criteria for the second-order self-adjoint Matrix differential equations by using the Riccatti technique are obtained. A suitable example is given to illustrate the significance and effectiveness of the result.","PeriodicalId":254600,"journal":{"name":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26782/jmcms.2024.03.00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, new oscillation criteria for the second-order self-adjoint Matrix differential equations by using the Riccatti technique are obtained. A suitable example is given to illustrate the significance and effectiveness of the result.
分数矩阵微分方程解的振荡行为
本文利用 Riccatti 技术获得了二阶自洽矩阵微分方程的新振荡准则。文中给出了一个合适的例子来说明该结果的意义和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信