{"title":"Dense wavelength division multiplexing scheme based on effective distributed inline light fiber Raman amplifier configuration","authors":"Govindaraj Ramkumar, P. Devi, Vinodhini Shankar, Sivaraman Pandarinathan, Rajinikanth Eshwar, Binu Sukumar, Omar Karem Omran","doi":"10.1515/joc-2024-0020","DOIUrl":null,"url":null,"abstract":"\n This paper demonstrated the dense wavelength division multiplexing scheme based on effective distributed inline light fiber Raman amplifier configuration. Various forward/backward and bidirectional pumping power configurations are studied versus fiber reach. Output light signal power is demonstrated against fiber reach without Raman amplification technique. Output light signal power in the forward Raman amplification scheme is clarified with pumping power of both 500 mW and 700 mW in various fiber channel configurations. As well as output light signal power in the backward Raman amplification scheme with pumping power of both 500 mW and 700 mW in various fiber channel configurations. Amplification Raman gain parameter coefficient is demonstrated with various values of pumping power pump based on various fiber channel configurations. Backward amplification net parameter gain is studied for different single mode/true wave/freelight fibers channel configuration at different both pumping power values and fiber reach. As well as the forward amplification net parameter gain is clarified for different single mode/true wave/freelight fibers channel configuration at different both pumping power values and fiber reach.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2024-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper demonstrated the dense wavelength division multiplexing scheme based on effective distributed inline light fiber Raman amplifier configuration. Various forward/backward and bidirectional pumping power configurations are studied versus fiber reach. Output light signal power is demonstrated against fiber reach without Raman amplification technique. Output light signal power in the forward Raman amplification scheme is clarified with pumping power of both 500 mW and 700 mW in various fiber channel configurations. As well as output light signal power in the backward Raman amplification scheme with pumping power of both 500 mW and 700 mW in various fiber channel configurations. Amplification Raman gain parameter coefficient is demonstrated with various values of pumping power pump based on various fiber channel configurations. Backward amplification net parameter gain is studied for different single mode/true wave/freelight fibers channel configuration at different both pumping power values and fiber reach. As well as the forward amplification net parameter gain is clarified for different single mode/true wave/freelight fibers channel configuration at different both pumping power values and fiber reach.
期刊介绍:
This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications