Information Technology for Detecting Fakes and Propaganda Based on Machine Learning and Sentiment Analysis

Qeios Pub Date : 2024-03-18 DOI:10.32388/izfoxn
Vitalii Danylyk, V. Vysotska
{"title":"Information Technology for Detecting Fakes and Propaganda Based on Machine Learning and Sentiment Analysis","authors":"Vitalii Danylyk, V. Vysotska","doi":"10.32388/izfoxn","DOIUrl":null,"url":null,"abstract":"This article provides a comprehensive study of modern approaches used to identify fakes and propaganda. Machine learning is emerging as a dynamic tool for pattern recognition and adaptation that facilitates real-time analysis. In addition, the article provides an analysis of propaganda based on emotional colouring, which reveals the differences between propaganda and non-propaganda. The average emotional value for propaganda news is 0.151 and for non-propaganda news is 0.116. The average degree of subjectivity for propaganda news is 0.365 and for non-propaganda news is 0.283. The average value of positive emotion for propaganda news is 0.087 and for non-propaganda news is 0.082. The average negative emotion for propaganda news is 0.064 and for non-propaganda news is 0.034. -The average value of the complex emotional colouring for propaganda news is 0.021, and for non-propaganda news - 0.010. Keywords – propaganda, fakes, NLP, natural language processing, disinformation detection, machine learning, multimodal analysis.\n","PeriodicalId":500839,"journal":{"name":"Qeios","volume":"319 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qeios","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.32388/izfoxn","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides a comprehensive study of modern approaches used to identify fakes and propaganda. Machine learning is emerging as a dynamic tool for pattern recognition and adaptation that facilitates real-time analysis. In addition, the article provides an analysis of propaganda based on emotional colouring, which reveals the differences between propaganda and non-propaganda. The average emotional value for propaganda news is 0.151 and for non-propaganda news is 0.116. The average degree of subjectivity for propaganda news is 0.365 and for non-propaganda news is 0.283. The average value of positive emotion for propaganda news is 0.087 and for non-propaganda news is 0.082. The average negative emotion for propaganda news is 0.064 and for non-propaganda news is 0.034. -The average value of the complex emotional colouring for propaganda news is 0.021, and for non-propaganda news - 0.010. Keywords – propaganda, fakes, NLP, natural language processing, disinformation detection, machine learning, multimodal analysis.
基于机器学习和情感分析的识假和宣传信息技术
本文全面研究了用于识别假货和宣传品的现代方法。机器学习正在成为一种动态的模式识别和适应工具,有助于进行实时分析。此外,文章还基于情感色彩对宣传进行了分析,揭示了宣传与非宣传之间的差异。宣传新闻的平均情感值为 0.151,非宣传新闻的平均情感值为 0.116。宣传类新闻的平均主观程度为 0.365,非宣传类新闻的平均主观程度为 0.283。宣传类新闻的积极情绪平均值为 0.087,非宣传类新闻的积极情绪平均值为 0.082。宣传新闻的平均负面情绪值为 0.064,非宣传新闻的平均负面情绪值为 0.034。-宣传新闻的复杂情感色彩平均值为 0.021,非宣传新闻的复杂情感色彩平均值为 0.010。关键词 - 宣传、假新闻、NLP、自然语言处理、虚假信息检测、机器学习、多模态分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信