On Some Recurrence Relations Connected with Generalized Fermat Numbers and Some Properties of Divisibility for these Numbers

Ahmet Ipek
{"title":"On Some Recurrence Relations Connected with Generalized Fermat Numbers and Some Properties of Divisibility for these Numbers","authors":"Ahmet Ipek","doi":"10.9734/ajarr/2024/v18i5630","DOIUrl":null,"url":null,"abstract":"As a result of nice properties of Fermat numbers and their interesting applications, these numbers have recently seen a variety of developments and extensions. Within this framework, this paper contributes. The purpose of this paper is to obtain some recurrence relations connected with generalized Fermat numbers \\(\\mathcal{F}\\)\\(\\mathcal{n}\\) = \\(\\mathcal{a}\\)2\\(\\mathcal{n}\\) + 1 for \\(\\mathcal{a}\\); \\(\\mathcal{n}\\) \\(\\epsilon\\) \\(\\mathbb{Z}\\) and \\(\\mathcal{n}\\) \\(\\geq\\) 0 and as a result of these recurrent relations, to get some properties of divisibility for generalized Fermat numbers.","PeriodicalId":505193,"journal":{"name":"Asian Journal of Advanced Research and Reports","volume":"347 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Advanced Research and Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajarr/2024/v18i5630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a result of nice properties of Fermat numbers and their interesting applications, these numbers have recently seen a variety of developments and extensions. Within this framework, this paper contributes. The purpose of this paper is to obtain some recurrence relations connected with generalized Fermat numbers \(\mathcal{F}\)\(\mathcal{n}\) = \(\mathcal{a}\)2\(\mathcal{n}\) + 1 for \(\mathcal{a}\); \(\mathcal{n}\) \(\epsilon\) \(\mathbb{Z}\) and \(\mathcal{n}\) \(\geq\) 0 and as a result of these recurrent relations, to get some properties of divisibility for generalized Fermat numbers.
论与广义费马数有关的一些递推关系以及这些数的一些可分性属性
由于费马数的良好特性及其有趣的应用,这些数最近有了各种发展和扩展。在这一框架内,本文做出了贡献。本文的目的是得到一些与广义费马数有关的递推关系 \(\mathcal{F}\)\(\mathcal{n}\) = \(\mathcal{a}\)2\(\mathcal{n}\) + 1 for \(\mathcal{a}/);\(\mathcal{n}\)\(\epsilon\)\(\mathbb{Z}\)和\(\mathcal{n}\)\(\geq\)0,并且作为这些循环关系的结果,得到了广义费马数可分性的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信