Irene Benedetto, Alkis Koudounas, Lorenzo Vaiani, Eliana Pastor, Luca Cagliero, Francesco Tarasconi, Elena Baralis
{"title":"Boosting court judgment prediction and explanation using legal entities","authors":"Irene Benedetto, Alkis Koudounas, Lorenzo Vaiani, Eliana Pastor, Luca Cagliero, Francesco Tarasconi, Elena Baralis","doi":"10.1007/s10506-024-09397-8","DOIUrl":null,"url":null,"abstract":"<div><p>The automatic prediction of court case judgments using Deep Learning and Natural Language Processing is challenged by the variety of norms and regulations, the inherent complexity of the forensic language, and the length of legal judgments. Although state-of-the-art transformer-based architectures and Large Language Models (LLMs) are pre-trained on large-scale datasets, the underlying model reasoning is not transparent to the legal expert. This paper jointly addresses court judgment prediction and explanation by not only predicting the judgment but also providing legal experts with sentence-based explanations. To boost the performance of both tasks we leverage a legal named entity recognition step, which automatically annotates documents with meaningful domain-specific entity tags and masks the corresponding fine-grained descriptions. In such a way, transformer-based architectures and Large Language Models can attend to in-domain entity-related information in the inference process while neglecting irrelevant details. Furthermore, the explainer can boost the relevance of entity-enriched sentences while limiting the diffusion of potentially sensitive information. We also explore the use of in-context learning and lightweight fine-tuning to tailor LLMs to the legal language style and the downstream prediction and explanation tasks. The results obtained on a benchmark dataset from the Indian judicial system show the superior performance of entity-aware approaches to both judgment prediction and explanation.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"33 3","pages":"605 - 640"},"PeriodicalIF":3.1000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-024-09397-8","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The automatic prediction of court case judgments using Deep Learning and Natural Language Processing is challenged by the variety of norms and regulations, the inherent complexity of the forensic language, and the length of legal judgments. Although state-of-the-art transformer-based architectures and Large Language Models (LLMs) are pre-trained on large-scale datasets, the underlying model reasoning is not transparent to the legal expert. This paper jointly addresses court judgment prediction and explanation by not only predicting the judgment but also providing legal experts with sentence-based explanations. To boost the performance of both tasks we leverage a legal named entity recognition step, which automatically annotates documents with meaningful domain-specific entity tags and masks the corresponding fine-grained descriptions. In such a way, transformer-based architectures and Large Language Models can attend to in-domain entity-related information in the inference process while neglecting irrelevant details. Furthermore, the explainer can boost the relevance of entity-enriched sentences while limiting the diffusion of potentially sensitive information. We also explore the use of in-context learning and lightweight fine-tuning to tailor LLMs to the legal language style and the downstream prediction and explanation tasks. The results obtained on a benchmark dataset from the Indian judicial system show the superior performance of entity-aware approaches to both judgment prediction and explanation.
期刊介绍:
Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law.
Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative
modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and
public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.