Collaborative Application of Deep Learning Models for Enhanced Accuracy and Prediction in Carbon Neutrality Anomaly Detection

Yi Wang, Tianyu Wang, Wanyu Wang, Yiru Hou
{"title":"Collaborative Application of Deep Learning Models for Enhanced Accuracy and Prediction in Carbon Neutrality Anomaly Detection","authors":"Yi Wang, Tianyu Wang, Wanyu Wang, Yiru Hou","doi":"10.4018/joeuc.340385","DOIUrl":null,"url":null,"abstract":"In the face of intensifying global climate change, carbon neutrality has emerged as a pivotal strategy to curb greenhouse gas emissions and confront the complexities associated with climate challenges. However, achieving carbon neutrality poses a formidable challenge: the identification and mitigation of anomalies within the carbon sequestration process. These anomalies can result in unintended carbon dioxide leakage, emissions, or system failures, thus jeopardizing the feasibility and resilience of carbon neutrality initiatives. This research introduces the ResNet-BIGRU-TPA network, an innovative model that integrates deep learning techniques with time series attention mechanisms. The primary focus centers on addressing the intricate task of anomaly detection within the realm of carbon offsetting, specifically aiming to enhance precision in identifying a wide array of complex anomalous events. Through rigorous experimental validation across four diverse datasets, the model has exhibited exceptional performance.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"51 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.340385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the face of intensifying global climate change, carbon neutrality has emerged as a pivotal strategy to curb greenhouse gas emissions and confront the complexities associated with climate challenges. However, achieving carbon neutrality poses a formidable challenge: the identification and mitigation of anomalies within the carbon sequestration process. These anomalies can result in unintended carbon dioxide leakage, emissions, or system failures, thus jeopardizing the feasibility and resilience of carbon neutrality initiatives. This research introduces the ResNet-BIGRU-TPA network, an innovative model that integrates deep learning techniques with time series attention mechanisms. The primary focus centers on addressing the intricate task of anomaly detection within the realm of carbon offsetting, specifically aiming to enhance precision in identifying a wide array of complex anomalous events. Through rigorous experimental validation across four diverse datasets, the model has exhibited exceptional performance.
协同应用深度学习模型,提高碳中和异常检测的准确性和预测能力
面对日益加剧的全球气候变化,碳中和已成为遏制温室气体排放和应对与气候挑战相关的复杂问题的关键战略。然而,实现碳中和提出了一个艰巨的挑战:识别和减少碳封存过程中的异常现象。这些异常现象可能导致二氧化碳意外泄漏、排放或系统故障,从而危及碳中和计划的可行性和适应性。这项研究引入了 ResNet-BIGRU-TPA 网络,这是一个将深度学习技术与时间序列关注机制相结合的创新模型。研究的主要重点是解决碳抵消领域异常检测的复杂任务,特别是提高识别各种复杂异常事件的精度。通过对四个不同数据集的严格实验验证,该模型表现出了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信