Petar Todorov, Ognyan Ivanov, Ismail Gultepe, Martin Agelin-Chaab, José Luis Pérez-Díaz, Tanja Dreischuh, Kostadin Kostadinov
{"title":"Optimization of the Air Cleaning Properties of Fog","authors":"Petar Todorov, Ognyan Ivanov, Ismail Gultepe, Martin Agelin-Chaab, José Luis Pérez-Díaz, Tanja Dreischuh, Kostadin Kostadinov","doi":"10.1007/s41810-024-00220-0","DOIUrl":null,"url":null,"abstract":"<div><p>Fog droplets are very often used as a cleaning agent when air pollution can be dangerous for health conditions and ecosystem. This work presents a new system to optimize the cleaning properties of fog by tuning its microphysical parameters. For this purpose, a newly developed system, which is based on the electromagnetic echo effect (EMEE) sensor, is used to detect the most efficient interaction between fog and impurities, i.e., which fog droplets can be used to most effectively clean a certain type of pollutant from the air. Fog droplet spectra controlled by the nozzle pressure system can be used to effectively remove pollutants from the air. For this purpose, an automated system for aerosol generation can allow an accurate control over the fog microphysical parameters and the use of fluids with specific concentrations of pulverized chemical compounds. Fog droplet size distribution is controlled by the feeding gas pressure at the nozzle and chemical simulants. The experimental results showed that the microphysical parameters (MP) are directly related to the impurity of species used in the cleanup simulation process. The MP parameters of fog are liquid water content (LWC), droplet mean radius (<i>R</i><sub><i>m</i></sub>), droplet number concentration (<i>N</i><sub><i>d</i></sub>), and both aerosol type and mass concentration. In the lab testing, harmless simulants of CBRN (chemical, biological, radiological and nuclear) species were used. During the tests, fog droplet size distribution is controlled by the air pressure at the nozzle and simulants. It is concluded that an integrated fog generator system (IFGS) with EMEE sensor developed in the current work can be utilized broadly to control fog microphysical parameters, leading to an optimum aerosol/chemical species’ cleaning process.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"8 2","pages":"241 - 248"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41810-024-00220-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-024-00220-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fog droplets are very often used as a cleaning agent when air pollution can be dangerous for health conditions and ecosystem. This work presents a new system to optimize the cleaning properties of fog by tuning its microphysical parameters. For this purpose, a newly developed system, which is based on the electromagnetic echo effect (EMEE) sensor, is used to detect the most efficient interaction between fog and impurities, i.e., which fog droplets can be used to most effectively clean a certain type of pollutant from the air. Fog droplet spectra controlled by the nozzle pressure system can be used to effectively remove pollutants from the air. For this purpose, an automated system for aerosol generation can allow an accurate control over the fog microphysical parameters and the use of fluids with specific concentrations of pulverized chemical compounds. Fog droplet size distribution is controlled by the feeding gas pressure at the nozzle and chemical simulants. The experimental results showed that the microphysical parameters (MP) are directly related to the impurity of species used in the cleanup simulation process. The MP parameters of fog are liquid water content (LWC), droplet mean radius (Rm), droplet number concentration (Nd), and both aerosol type and mass concentration. In the lab testing, harmless simulants of CBRN (chemical, biological, radiological and nuclear) species were used. During the tests, fog droplet size distribution is controlled by the air pressure at the nozzle and simulants. It is concluded that an integrated fog generator system (IFGS) with EMEE sensor developed in the current work can be utilized broadly to control fog microphysical parameters, leading to an optimum aerosol/chemical species’ cleaning process.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.