Higher dimensional integrable deformations of the classical Boussinesq-Burgers system

Xiaoyu Cheng, Qing Huang
{"title":"Higher dimensional integrable deformations of the classical Boussinesq-Burgers system","authors":"Xiaoyu Cheng, Qing Huang","doi":"10.1088/1572-9494/ad3546","DOIUrl":null,"url":null,"abstract":"\n In this paper, (1+1)-dimensional classical Boussinesq-Burgers (CBB) system is extended to a (4+1)-dimensional CBB system by using its conservation laws and the deformation algorithm. The Lax integrability, symmetry integrability and a large number of reduced systems of the new higher dimensional CBB system are given. What's more, for illustration, we study a (1+1)-dimensional reduced system of higher dimensional system and its exact solution is constructed by using Lie symmetry analysis and the power series method.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad3546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, (1+1)-dimensional classical Boussinesq-Burgers (CBB) system is extended to a (4+1)-dimensional CBB system by using its conservation laws and the deformation algorithm. The Lax integrability, symmetry integrability and a large number of reduced systems of the new higher dimensional CBB system are given. What's more, for illustration, we study a (1+1)-dimensional reduced system of higher dimensional system and its exact solution is constructed by using Lie symmetry analysis and the power series method.
经典 Boussinesq-Burgers 系统的高维可积分变形
本文利用(1+1)维经典布辛斯-伯格斯(CBB)系统的守恒定律和变形算法,将其扩展为(4+1)维CBB系统。给出了新的高维 CBB 系统的拉克斯可积分性、对称可积分性和大量还原系统。此外,为了说明问题,我们还研究了高维系统的 (1+1)-dimensional 简化系统,并利用李对称分析和幂级数法构建了其精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信