{"title":"Optimizing deep learning-based intrusion detection in cloud computing environment with chaotic tunicate swarm algorithm","authors":"C. Jansi Sophia Mary, K. Mahalakshmi","doi":"10.3233/jifs-237900","DOIUrl":null,"url":null,"abstract":"Intrusion Detection (ID) in cloud environments is vital to maintain the safety and integrity of data and resources. However, the presence of class imbalance, where normal samples significantly outweigh intrusive instances, poses a challenge in constructing a potential ID system. Deep Learning (DL) methods, with their capability to automatically study complex patterns and features, present a promising solution in various ID tasks. Such methods can automatically learn intricate features and patterns from the input dataset, making them suitable for detecting anomalies and finding intrusions in cloud environments. Therefore, this study proposes a Class Imbalance Data Handling with an Optimal Deep Learning-Based Intrusion Detection System (CIDH-ODLIDS) in a cloud computing atmosphere. The CIDH-ODLIDS technique leverages optimal DL-based classification and addresses class imbalance. Primarily, the CIDH-ODLIDS technique preprocesses the input data using a Z-score normalization approach to ensure data quality and consistency. To handle class imbalance, the CIDH-ODLIDS technique employs oversampling techniques, particularly focused on synthetic minority oversampling techniques such as Adaptive Synthetic (ADASYN) sampling. ADASYN generates synthetic instances for the minority class depending on the available data instances, effectively balancing the class distribution and mitigating the impact of class imbalance. For the ID process, the CIDH-ODLIDS technique utilizes a Fuzzy Deep Neural Network (FDNN) model, and its tuning procedure is performed using the Chaotic Tunicate Swarm Algorithm (CTSA). CTSA is employed to choose the learning rate of the FDNN methods optimally. The experimental assessment of the CIDH-ODLIDS method is extensively conducted on three IDS datasets. The comprehensive comparison results confirm the superiority of the CIDH-ODLIDS algorithm over existing techniques.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-237900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Intrusion Detection (ID) in cloud environments is vital to maintain the safety and integrity of data and resources. However, the presence of class imbalance, where normal samples significantly outweigh intrusive instances, poses a challenge in constructing a potential ID system. Deep Learning (DL) methods, with their capability to automatically study complex patterns and features, present a promising solution in various ID tasks. Such methods can automatically learn intricate features and patterns from the input dataset, making them suitable for detecting anomalies and finding intrusions in cloud environments. Therefore, this study proposes a Class Imbalance Data Handling with an Optimal Deep Learning-Based Intrusion Detection System (CIDH-ODLIDS) in a cloud computing atmosphere. The CIDH-ODLIDS technique leverages optimal DL-based classification and addresses class imbalance. Primarily, the CIDH-ODLIDS technique preprocesses the input data using a Z-score normalization approach to ensure data quality and consistency. To handle class imbalance, the CIDH-ODLIDS technique employs oversampling techniques, particularly focused on synthetic minority oversampling techniques such as Adaptive Synthetic (ADASYN) sampling. ADASYN generates synthetic instances for the minority class depending on the available data instances, effectively balancing the class distribution and mitigating the impact of class imbalance. For the ID process, the CIDH-ODLIDS technique utilizes a Fuzzy Deep Neural Network (FDNN) model, and its tuning procedure is performed using the Chaotic Tunicate Swarm Algorithm (CTSA). CTSA is employed to choose the learning rate of the FDNN methods optimally. The experimental assessment of the CIDH-ODLIDS method is extensively conducted on three IDS datasets. The comprehensive comparison results confirm the superiority of the CIDH-ODLIDS algorithm over existing techniques.