Lyapunov-Schmidt reduction in the study of bifurcation of periodic travelling wave solutions of a perturbed (1 + 1)−dimensional dispersive long wave equation

IF 0.4 Q4 MATHEMATICS, APPLIED
Mudhir A. Abdul Hussain
{"title":"Lyapunov-Schmidt reduction in the study of bifurcation of periodic travelling wave solutions of a perturbed (1 + 1)−dimensional dispersive long wave equation","authors":"Mudhir A. Abdul Hussain","doi":"10.5206/mase/16957","DOIUrl":null,"url":null,"abstract":"In this paper, the Lyapunov-Schmidt reduction is used to investigate the bifurcation of periodic travelling wave solutions of a perturbed (1+1)−dimensional dispersive long wave equation. We demonstrate that the bifurcation equation corresponding to the original problem is supplied by a nonlinear system of two cubic algebraic equations. As the bifurcation parameters change, this system has only one, three, or five regular real solutions. The linear approximation of the solutions to the main problem has been discovered.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/16957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the Lyapunov-Schmidt reduction is used to investigate the bifurcation of periodic travelling wave solutions of a perturbed (1+1)−dimensional dispersive long wave equation. We demonstrate that the bifurcation equation corresponding to the original problem is supplied by a nonlinear system of two cubic algebraic equations. As the bifurcation parameters change, this system has only one, three, or five regular real solutions. The linear approximation of the solutions to the main problem has been discovered.
扰动 (1 + 1) 维分散长波方程周期性行波解分岔研究中的李亚普诺夫-施密特还原法
本文利用 Lyapunov-Schmidt 还原法研究了扰动 (1+1) 维分散长波方程的周期性游波解的分岔问题。我们证明,与原始问题相对应的分岔方程由两个立方代数方程的非线性系统提供。随着分岔参数的变化,这个系统只有一个、三个或五个正则实解。主问题解的线性近似已经被发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信