{"title":"Time-Resolved Local Loss Analysis of Single- and Two-Blade Pump Flow","authors":"A. Pesch, R. Skoda","doi":"10.1115/1.4065099","DOIUrl":null,"url":null,"abstract":"\n A method for the evaluation of time-resolved entropy production in isothermal and incompressible flow is presented. It is applied as a post-processing of the three-dimensional flow field obtained by time-resolved computational fluid dynamics with scale adaptive turbulence modeling. Wall functions for direct and turbulent entropy production are presented for a cell-centered finite volume method, implemented in the open source software OpenFOAM and validated on channel, asymmetric diffuser and periodic hill flow. Single- and two-blade centrifugal pump flow is considered for a wide range of load conditions. Results are compared to experimental data. Time-averaged analysis shows essentially the same loss density distribution among pump components for both pumps, with the impeller and volute region contributing the most, especially in off-design conditions. For both pumps, the losses exhibit significant fluctuations due to impeller-volute interactions. The fluctuation magnitude of loss density is in the same range as flow rate fluctuations and much smaller than pressure fluctuation magnitude. For the two-blade pump, loss fluctuation magnitude is smaller than for the single-blade pump. Distinct loss mechanisms are identified for different load conditions. Upon blade passage, a promoted or attenuated volute tongue separation is imposed at part or overload, respectively. In between blade passages, a direct connection from pump inlet to the discharge leads to enhanced flow rate and loss density fluctuations. Future work aims at extending this analysis to stronger off-design conditions in multi-blade pumps, where stochastic cycle fluctuations occur.","PeriodicalId":504378,"journal":{"name":"Journal of Fluids Engineering","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A method for the evaluation of time-resolved entropy production in isothermal and incompressible flow is presented. It is applied as a post-processing of the three-dimensional flow field obtained by time-resolved computational fluid dynamics with scale adaptive turbulence modeling. Wall functions for direct and turbulent entropy production are presented for a cell-centered finite volume method, implemented in the open source software OpenFOAM and validated on channel, asymmetric diffuser and periodic hill flow. Single- and two-blade centrifugal pump flow is considered for a wide range of load conditions. Results are compared to experimental data. Time-averaged analysis shows essentially the same loss density distribution among pump components for both pumps, with the impeller and volute region contributing the most, especially in off-design conditions. For both pumps, the losses exhibit significant fluctuations due to impeller-volute interactions. The fluctuation magnitude of loss density is in the same range as flow rate fluctuations and much smaller than pressure fluctuation magnitude. For the two-blade pump, loss fluctuation magnitude is smaller than for the single-blade pump. Distinct loss mechanisms are identified for different load conditions. Upon blade passage, a promoted or attenuated volute tongue separation is imposed at part or overload, respectively. In between blade passages, a direct connection from pump inlet to the discharge leads to enhanced flow rate and loss density fluctuations. Future work aims at extending this analysis to stronger off-design conditions in multi-blade pumps, where stochastic cycle fluctuations occur.