{"title":"Retracting a ball in $\\ell_1$ onto its simple spherical cap","authors":"J. Intrakul, S. Iampiboonvatana","doi":"10.12775/tmna.2024.005","DOIUrl":null,"url":null,"abstract":"In this article, a notion and classification of spherical caps in the sequence space $\\ell_1$ are introduced, and the least Lipschitz constant of Lipschitz retractions from the unit ball onto a spherical cap is defined.\nIn addition, an approximation of this value for the specific spherical cap, the simple spherical cap, is calculated. This approximation reveals a rough relation between these values, denoted by $\\kappa(\\alpha)$, and the answer of the optimal retraction problem for the space $\\ell_1$, denoted by $k_0(\\ell_1)$.\nTo be precise, there exists $-1< \\mu< 0$ such that $k_0(\\ell_1)\\leq\\kappa(\\alpha)\\leq2+k_0(\\ell_1)$ whenever $-1< \\alpha< \\mu$; here $\\alpha$ is the level of spherical cap.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2024.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, a notion and classification of spherical caps in the sequence space $\ell_1$ are introduced, and the least Lipschitz constant of Lipschitz retractions from the unit ball onto a spherical cap is defined.
In addition, an approximation of this value for the specific spherical cap, the simple spherical cap, is calculated. This approximation reveals a rough relation between these values, denoted by $\kappa(\alpha)$, and the answer of the optimal retraction problem for the space $\ell_1$, denoted by $k_0(\ell_1)$.
To be precise, there exists $-1< \mu< 0$ such that $k_0(\ell_1)\leq\kappa(\alpha)\leq2+k_0(\ell_1)$ whenever $-1< \alpha< \mu$; here $\alpha$ is the level of spherical cap.