Retracting a ball in $\ell_1$ onto its simple spherical cap

Pub Date : 2024-03-19 DOI:10.12775/tmna.2024.005
J. Intrakul, S. Iampiboonvatana
{"title":"Retracting a ball in $\\ell_1$ onto its simple spherical cap","authors":"J. Intrakul, S. Iampiboonvatana","doi":"10.12775/tmna.2024.005","DOIUrl":null,"url":null,"abstract":"In this article, a notion and classification of spherical caps in the sequence space $\\ell_1$ are introduced, and the least Lipschitz constant of Lipschitz retractions from the unit ball onto a spherical cap is defined.\nIn addition, an approximation of this value for the specific spherical cap, the simple spherical cap, is calculated. This approximation reveals a rough relation between these values, denoted by $\\kappa(\\alpha)$, and the answer of the optimal retraction problem for the space $\\ell_1$, denoted by $k_0(\\ell_1)$.\nTo be precise, there exists $-1< \\mu< 0$ such that $k_0(\\ell_1)\\leq\\kappa(\\alpha)\\leq2+k_0(\\ell_1)$ whenever $-1< \\alpha< \\mu$; here $\\alpha$ is the level of spherical cap.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2024.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a notion and classification of spherical caps in the sequence space $\ell_1$ are introduced, and the least Lipschitz constant of Lipschitz retractions from the unit ball onto a spherical cap is defined. In addition, an approximation of this value for the specific spherical cap, the simple spherical cap, is calculated. This approximation reveals a rough relation between these values, denoted by $\kappa(\alpha)$, and the answer of the optimal retraction problem for the space $\ell_1$, denoted by $k_0(\ell_1)$. To be precise, there exists $-1< \mu< 0$ such that $k_0(\ell_1)\leq\kappa(\alpha)\leq2+k_0(\ell_1)$ whenever $-1< \alpha< \mu$; here $\alpha$ is the level of spherical cap.
分享
查看原文
将 $\ell_1$ 中的球缩回到其简单的球帽上
本文介绍了序列空间 $\ell_1$ 中球形帽的概念和分类,并定义了从单位球到球形帽的 Lipschitz 回缩的最小 Lipschitz 常量。此外,还计算了特定球形帽(即简单球形帽)的近似值。这个近似值揭示了这些值(用 $k\kappa(\alpha)$ 表示)与空间 $\ell_1$ 的最优回缩问题答案(用 $k_0(\ell_1)$ 表示)之间的大致关系。确切地说,当 $-1< \alpha< \mu$ 时,存在 $-1< \mu< 0$,使得 $k_0(\ell_1)\leq\kappa(\alpha)\leq2+k_0(\ell_1)$ ;这里的 $\alpha$ 是球帽的级别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信