Ultrafast-adsorption-kinetics molecular sieving of propylene from propane

Ruike Zhang, Jiong Zhou
{"title":"Ultrafast-adsorption-kinetics molecular sieving of propylene from propane","authors":"Ruike Zhang, Jiong Zhou","doi":"10.18686/cest.v2i2.126","DOIUrl":null,"url":null,"abstract":"The separation of propylene (C3H6) and propane (C3H8) is very costly due to similar physical-chemical properties and has been listed as one of the seven chemical separations to change the world. High-purity C3H6 is an important raw material to produce polypropylene and acrylonitrile. However, C3H8 is produced as a by-product in the production process of C3H6, which has a similar structure and boiling point as those of C3H6. Traditionally, the separation of C3H6 and C3H8 by distillation has high energy consumption and an unremarkable separation effect. Therefore, there is an urgent need to develop more energy-saving and efficient methods for the separation of C3H6 and C3H8.","PeriodicalId":496532,"journal":{"name":"Clean Energy Science and Technology","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Energy Science and Technology","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.18686/cest.v2i2.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The separation of propylene (C3H6) and propane (C3H8) is very costly due to similar physical-chemical properties and has been listed as one of the seven chemical separations to change the world. High-purity C3H6 is an important raw material to produce polypropylene and acrylonitrile. However, C3H8 is produced as a by-product in the production process of C3H6, which has a similar structure and boiling point as those of C3H6. Traditionally, the separation of C3H6 and C3H8 by distillation has high energy consumption and an unremarkable separation effect. Therefore, there is an urgent need to develop more energy-saving and efficient methods for the separation of C3H6 and C3H8.
丙烷制丙烯的超快吸附动力学分子筛分技术
丙烯(C3H6)和丙烷(C3H8)具有相似的物理化学性质,因此丙烯和丙烷的分离成本非常高,被列为改变世界的七大化学分离之一。高纯度 C3H6 是生产聚丙烯和丙烯腈的重要原料。然而,C3H8 是 C3H6 生产过程中产生的副产品,其结构和沸点与 C3H6 相似。传统的蒸馏法分离 C3H6 和 C3H8 能耗高,分离效果不明显。因此,迫切需要开发更节能、更高效的 C3H6 和 C3H8 分离方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信