{"title":"Predicting and Visualizing Lateral Movements Based on ATT&CK and Quantification Theory Type 3","authors":"Satoshi Okada, Yosuke Katano, Yukihiro Kozai, Takuho Mitsunaga","doi":"10.4018/jcit.340722","DOIUrl":null,"url":null,"abstract":"When a cyber incident occurs, organizations need to identify the attack's impacts. They have to investigate potentially infected devices as well as certainly infected devices. However, as an organization's network expands, it is difficult to investigate all devices. In addition, the cybersecurity workforce shortage has risen, so organizations need to respond to incidents efficiently with limited human resources. To solve this problem, this paper proposes a tool to assist an incident response team. It can visualize ATT&CK techniques attacker used and, furthermore, detect lateral movements efficiently. The tool consists of two parts: a web application that extracts ATT&CK techniques from logs and a lateral movement detection system. The web application was implemented and could map the collected logs obtained from an actual Windows device to the ATT&CK matrix. Furthermore, actual lateral movements were performed in an experimental environment that imitated an organizational network, and the proposed detection system could detect them.","PeriodicalId":43384,"journal":{"name":"Journal of Cases on Information Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cases on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jcit.340722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
When a cyber incident occurs, organizations need to identify the attack's impacts. They have to investigate potentially infected devices as well as certainly infected devices. However, as an organization's network expands, it is difficult to investigate all devices. In addition, the cybersecurity workforce shortage has risen, so organizations need to respond to incidents efficiently with limited human resources. To solve this problem, this paper proposes a tool to assist an incident response team. It can visualize ATT&CK techniques attacker used and, furthermore, detect lateral movements efficiently. The tool consists of two parts: a web application that extracts ATT&CK techniques from logs and a lateral movement detection system. The web application was implemented and could map the collected logs obtained from an actual Windows device to the ATT&CK matrix. Furthermore, actual lateral movements were performed in an experimental environment that imitated an organizational network, and the proposed detection system could detect them.
期刊介绍:
JCIT documents comprehensive, real-life cases based on individual, organizational and societal experiences related to the utilization and management of information technology. Cases published in JCIT deal with a wide variety of organizations such as businesses, government organizations, educational institutions, libraries, non-profit organizations. Additionally, cases published in JCIT report not only successful utilization of IT applications, but also failures and mismanagement of IT resources and applications.