{"title":"Optimal Key Generation for Privacy Preservation in Big Data Applications Based on the Marine Predator Whale Optimization Algorithm","authors":"Poonam Samir Jadhav, Gautam M. Borkar","doi":"10.1007/s40745-024-00521-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the era of big data, preserving data privacy has become paramount due to the sheer volume and sensitivity of the information being processed. This research is dedicated to safeguarding data privacy through a novel data sanitization approach centered on optimal key generation. Due to the size and complexity of the big data applications, managing big data with reduced risk and high privacyposes challenges. Many standard privacy-preserving mechanisms are introduced to maintain the volume and velocity of big data since it consists of massive and complex data. To solve this issue, this research developed a data sanitization technique for optimal key generation to preserve the privacy of the sensitive data. The sensitive data is initially identified by the quasi-identifiers and the identified sensitive data is preserved by generating an optimal key using the proposed marine predator whale optimization (MPWO) algorithm. The proposed algorithm is developed by the hybridization of the characteristics of foraging behaviors of the marine predators and the whales are hybridized to determine the optimal key. The optimal key generated using the MPWO algorithm effectively preserves the privacy of the data. The efficiency of the research is proved by measuring the metrics equivalent class size metric values of 0.03, 185.07, and 0.04 for attribute disclosure attack, identity disclosure attack, and identity disclosure attack. Similarly, the Discernibility metrics value is measured as 0.08, 123.38, 0.09 with attribute disclosure attack, identity disclosure attack, identity disclosure attack, and the Normalized certainty penalty is measured as 0.002, 61.69, 0.001 attribute disclosure attack, identity disclosure attack, identity disclosure attack.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 2","pages":"539 - 569"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00521-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
In the era of big data, preserving data privacy has become paramount due to the sheer volume and sensitivity of the information being processed. This research is dedicated to safeguarding data privacy through a novel data sanitization approach centered on optimal key generation. Due to the size and complexity of the big data applications, managing big data with reduced risk and high privacyposes challenges. Many standard privacy-preserving mechanisms are introduced to maintain the volume and velocity of big data since it consists of massive and complex data. To solve this issue, this research developed a data sanitization technique for optimal key generation to preserve the privacy of the sensitive data. The sensitive data is initially identified by the quasi-identifiers and the identified sensitive data is preserved by generating an optimal key using the proposed marine predator whale optimization (MPWO) algorithm. The proposed algorithm is developed by the hybridization of the characteristics of foraging behaviors of the marine predators and the whales are hybridized to determine the optimal key. The optimal key generated using the MPWO algorithm effectively preserves the privacy of the data. The efficiency of the research is proved by measuring the metrics equivalent class size metric values of 0.03, 185.07, and 0.04 for attribute disclosure attack, identity disclosure attack, and identity disclosure attack. Similarly, the Discernibility metrics value is measured as 0.08, 123.38, 0.09 with attribute disclosure attack, identity disclosure attack, identity disclosure attack, and the Normalized certainty penalty is measured as 0.002, 61.69, 0.001 attribute disclosure attack, identity disclosure attack, identity disclosure attack.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.