Optimal Key Generation for Privacy Preservation in Big Data Applications Based on the Marine Predator Whale Optimization Algorithm

Q1 Decision Sciences
Poonam Samir Jadhav, Gautam M. Borkar
{"title":"Optimal Key Generation for Privacy Preservation in Big Data Applications Based on the Marine Predator Whale Optimization Algorithm","authors":"Poonam Samir Jadhav,&nbsp;Gautam M. Borkar","doi":"10.1007/s40745-024-00521-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the era of big data, preserving data privacy has become paramount due to the sheer volume and sensitivity of the information being processed. This research is dedicated to safeguarding data privacy through a novel data sanitization approach centered on optimal key generation. Due to the size and complexity of the big data applications, managing big data with reduced risk and high privacyposes challenges. Many standard privacy-preserving mechanisms are introduced to maintain the volume and velocity of big data since it consists of massive and complex data. To solve this issue, this research developed a data sanitization technique for optimal key generation to preserve the privacy of the sensitive data. The sensitive data is initially identified by the quasi-identifiers and the identified sensitive data is preserved by generating an optimal key using the proposed marine predator whale optimization (MPWO) algorithm. The proposed algorithm is developed by the hybridization of the characteristics of foraging behaviors of the marine predators and the whales are hybridized to determine the optimal key. The optimal key generated using the MPWO algorithm effectively preserves the privacy of the data. The efficiency of the research is proved by measuring the metrics equivalent class size metric values of 0.03, 185.07, and 0.04 for attribute disclosure attack, identity disclosure attack, and identity disclosure attack. Similarly, the Discernibility metrics value is measured as 0.08, 123.38, 0.09 with attribute disclosure attack, identity disclosure attack, identity disclosure attack, and the Normalized certainty penalty is measured as 0.002, 61.69, 0.001 attribute disclosure attack, identity disclosure attack, identity disclosure attack.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 2","pages":"539 - 569"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00521-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of big data, preserving data privacy has become paramount due to the sheer volume and sensitivity of the information being processed. This research is dedicated to safeguarding data privacy through a novel data sanitization approach centered on optimal key generation. Due to the size and complexity of the big data applications, managing big data with reduced risk and high privacyposes challenges. Many standard privacy-preserving mechanisms are introduced to maintain the volume and velocity of big data since it consists of massive and complex data. To solve this issue, this research developed a data sanitization technique for optimal key generation to preserve the privacy of the sensitive data. The sensitive data is initially identified by the quasi-identifiers and the identified sensitive data is preserved by generating an optimal key using the proposed marine predator whale optimization (MPWO) algorithm. The proposed algorithm is developed by the hybridization of the characteristics of foraging behaviors of the marine predators and the whales are hybridized to determine the optimal key. The optimal key generated using the MPWO algorithm effectively preserves the privacy of the data. The efficiency of the research is proved by measuring the metrics equivalent class size metric values of 0.03, 185.07, and 0.04 for attribute disclosure attack, identity disclosure attack, and identity disclosure attack. Similarly, the Discernibility metrics value is measured as 0.08, 123.38, 0.09 with attribute disclosure attack, identity disclosure attack, identity disclosure attack, and the Normalized certainty penalty is measured as 0.002, 61.69, 0.001 attribute disclosure attack, identity disclosure attack, identity disclosure attack.

基于海洋掠食者鲸鱼优化算法的大数据应用隐私保护最佳密钥生成方法
在大数据时代,由于所处理信息的庞大数量和敏感性,保护数据隐私变得至关重要。本研究致力于通过一种以最优密钥生成为中心的新型数据消毒方法来保护数据隐私。由于大数据应用的规模和复杂性,对低风险、高隐私的大数据管理提出了挑战。由于大数据包含大量复杂的数据,因此引入了许多标准的隐私保护机制来保持大数据的数量和速度。为了解决这一问题,本研究开发了一种数据消毒技术,用于最优密钥生成,以保护敏感数据的隐私性。利用准标识符对敏感数据进行初始识别,并利用所提出的MPWO算法生成最优密钥对识别出的敏感数据进行保存。该算法将海洋捕食者的觅食行为特征与鲸鱼进行杂交,从而确定最优关键字。使用MPWO算法生成的最优密钥有效地保护了数据的隐私性。通过测量属性披露攻击、身份披露攻击和身份披露攻击的度量等价类大小度量值分别为0.03、185.07和0.04,证明了研究的有效性。同样,属性披露攻击、身份披露攻击、身份披露攻击的可别性度量值分别为0.08、123.38、0.09,属性披露攻击、身份披露攻击、身份披露攻击的归一化确定性惩罚分别为0.002、61.69、0.001。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信