Foundational aspects of a new matrix holomorphic structure

Q2 Mathematics
H. Khedhiri, Taher Mkademi
{"title":"Foundational aspects of a new matrix holomorphic structure","authors":"H. Khedhiri, Taher Mkademi","doi":"10.1108/ajms-08-2023-0002","DOIUrl":null,"url":null,"abstract":"<jats:sec><jats:title content-type=\"abstract-subheading\">Purpose</jats:title><jats:p>In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Design/methodology/approach</jats:title><jats:p>We introduce and investigate the complex space <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msub><m:mrow><m:mi mathvariant=\"double-struck\">H</m:mi></m:mrow><m:mrow><m:mi mathvariant=\"double-struck\">C</m:mi></m:mrow></m:msub></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-08-2023-0002001.tif\" /></jats:inline-formula> consisting of all 2 × 2 complex matrices of the form <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mspace width=\"0.28em\" /><m:mi>ξ</m:mi><m:mo>=</m:mo><m:mfenced open=\"(\" close=\")\"><m:mrow><m:mtable class=\"matrix\"><m:mtr><m:mtd columnalign=\"center\"><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>+</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub></m:mtd><m:mtd columnalign=\"center\"><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub><m:mo>+</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mtd></m:mtr><m:mtr><m:mtd columnalign=\"center\"><m:mo>−</m:mo><m:msub><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>z</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub><m:mo>−</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>w</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mtd><m:mtd columnalign=\"center\"><m:msub><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>z</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>+</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>w</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub></m:mtd></m:mtr></m:mtable></m:mrow></m:mfenced></m:math>, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mo>(</m:mo><m:mrow><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>,</m:mo><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>,</m:mo><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub><m:mo>,</m:mo><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mrow><m:mo>)</m:mo></m:mrow><m:mo>∈</m:mo><m:msup><m:mrow><m:mi mathvariant=\"double-struck\">C</m:mi></m:mrow><m:mrow><m:mn>4</m:mn></m:mrow></m:msup></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-08-2023-0002002.tif\" /></jats:inline-formula>.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Findings</jats:title><jats:p>We develop on <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msub><m:mrow><m:mi mathvariant=\"double-struck\">H</m:mi></m:mrow><m:mrow><m:mi mathvariant=\"double-struck\">C</m:mi></m:mrow></m:msub></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-08-2023-0002003.tif\" /></jats:inline-formula> a new matrix holomorphic structure for which we provide the fundamental operational calculus properties.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Originality/value</jats:title><jats:p>We give sufficient and necessary conditions in terms of Cauchy–Riemann type quaternionic differential equations for holomorphicity of a function of one complex matrix variable <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mi>ξ</m:mi><m:mo>∈</m:mo><m:msub><m:mrow><m:mi mathvariant=\"double-struck\">H</m:mi></m:mrow><m:mrow><m:mi mathvariant=\"double-struck\">C</m:mi></m:mrow></m:msub></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-08-2023-0002004.tif\" /></jats:inline-formula>. In particular, we show that we have a lot of holomorphic functions of one matrix quaternion variable.</jats:p></jats:sec>","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":"86 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-08-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeIn this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.Design/methodology/approachWe introduce and investigate the complex space HC consisting of all 2 × 2 complex matrices of the form ξ=z1+iw1z2+iw2z2iw2z1+iw1, (z1,w1,z2,w2)C4.FindingsWe develop on HC a new matrix holomorphic structure for which we provide the fundamental operational calculus properties.Originality/valueWe give sufficient and necessary conditions in terms of Cauchy–Riemann type quaternionic differential equations for holomorphicity of a function of one complex matrix variable ξHC. In particular, we show that we have a lot of holomorphic functions of one matrix quaternion variable.
新矩阵全态结构的基础方面
目的本文讨论复矩阵四元数(双四元数),并涉及数学复矩阵分析中的一些抽象方法。设计/方法/途径我们引入并研究由所有形式为ξ=z1+w1z2+w2-z‾2-w2-z‾1+w2-z‾1+w2-1, (z1,w1,z2,w2)∈C4的 2 × 2 复矩阵组成的复空间 HC。发现我们在 HC 上发展了一种新的矩阵全纯结构,并为其提供了基本的运算微积分性质。原创性/价值我们用考奇-黎曼型四元微分方程给出了一个复矩阵变量的函数ξ∈HC 的全纯性的充分和必要条件。特别是,我们证明我们有很多一个矩阵四元变量的全态函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信