Optimized TOPSIS technique for trajectory selection of self-driving vehicles on highways

Andrés Antonio Arenas Muñiz, Dante Mújica-Vargas, Arturo Rendón Castro, Antonio Luna-Álvarez, Virna V. Vela-Rincón
{"title":"Optimized TOPSIS technique for trajectory selection of self-driving vehicles on highways","authors":"Andrés Antonio Arenas Muñiz, Dante Mújica-Vargas, Arturo Rendón Castro, Antonio Luna-Álvarez, Virna V. Vela-Rincón","doi":"10.3233/jifs-219365","DOIUrl":null,"url":null,"abstract":" The selection of an appropriate trajectory for self-driving vehicles involves the analysis of several criteria that describe the generated trajectories. This problem evolves into an optimization problem when it is desired to increase or decrease the values for a specific criterion. The contribution of this thesis is to explore the use and optimization of another technique for decision-making, such as TOPSIS, with a sufficiently robust method that allows the inclusion of multiple parameters and their proper optimization, incorporating human experience. The proposed approach showed significantly higher safety and comfort performance, with about 20% better efficiency and 80% fewer safety violations compared to other state-of-the-art methods, and in some cases outperforming in comfort by about 30.43%.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"133 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-219365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

 The selection of an appropriate trajectory for self-driving vehicles involves the analysis of several criteria that describe the generated trajectories. This problem evolves into an optimization problem when it is desired to increase or decrease the values for a specific criterion. The contribution of this thesis is to explore the use and optimization of another technique for decision-making, such as TOPSIS, with a sufficiently robust method that allows the inclusion of multiple parameters and their proper optimization, incorporating human experience. The proposed approach showed significantly higher safety and comfort performance, with about 20% better efficiency and 80% fewer safety violations compared to other state-of-the-art methods, and in some cases outperforming in comfort by about 30.43%.
高速公路上自动驾驶车辆轨迹选择的优化 TOPSIS 技术
为自动驾驶车辆选择合适的轨迹需要对描述生成轨迹的若干标准进行分析。当需要增加或减少特定标准的值时,这个问题就演变成了优化问题。本论文的贡献在于探索另一种决策技术(如 TOPSIS)的使用和优化,该方法具有足够的鲁棒性,允许包含多个参数并结合人类经验对其进行适当优化。与其他最先进的方法相比,所提出的方法明显提高了安全性和舒适性,效率提高了约 20%,违反安全规定的情况减少了 80%,在某些情况下,舒适性提高了约 30.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信