The parametric Willmore flow

Francesco Palmurella, Tristan Rivière
{"title":"The parametric Willmore flow","authors":"Francesco Palmurella, Tristan Rivière","doi":"10.1515/crelle-2024-0011","DOIUrl":null,"url":null,"abstract":"\n <jats:p>We establish a minimal positive existence time of the parametric Willmore flow for any smooth initial data (smooth immersion of a closed oriented surface).\nThe minimal existence time is a function exclusively of geometric data which in particular are all well defined for general weak Lipschitz <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi>W</m:mi>\n <m:mrow>\n <m:mn>2</m:mn>\n <m:mo>,</m:mo>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0011_ineq_0001.png\" />\n <jats:tex-math>W^{2,2}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> immersions.\nThis fact opens in particular the possibility for defining the Willmore flow for weak Lipschitz <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi>W</m:mi>\n <m:mrow>\n <m:mn>2</m:mn>\n <m:mo>,</m:mo>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0011_ineq_0001.png\" />\n <jats:tex-math>W^{2,2}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> initial data.</jats:p>","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"128 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a minimal positive existence time of the parametric Willmore flow for any smooth initial data (smooth immersion of a closed oriented surface). The minimal existence time is a function exclusively of geometric data which in particular are all well defined for general weak Lipschitz W 2 , 2 W^{2,2} immersions. This fact opens in particular the possibility for defining the Willmore flow for weak Lipschitz W 2 , 2 W^{2,2} initial data.
参数式威尔莫尔流
我们为任何光滑初始数据(闭合定向曲面的光滑浸入)建立了参数威尔莫尔流的最小正存在时间。最小存在时间是几何数据的唯一函数,而几何数据对于一般的弱李普齐兹 W 2 , 2 W^{2,2} 浸入都是定义良好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信