The Double XRAMA Distribution: Theory and Applications

David U. Gideon, Precious O. Ibeakuzie, Divine-Favour N. Ekemezie, M. P. Nwankwo, Dorathy O. Oramulu, Harrison O. Etaga
{"title":"The Double XRAMA Distribution: Theory and Applications","authors":"David U. Gideon, Precious O. Ibeakuzie, Divine-Favour N. Ekemezie, M. P. Nwankwo, Dorathy O. Oramulu, Harrison O. Etaga","doi":"10.34198/ejms.14324.477500","DOIUrl":null,"url":null,"abstract":"In this paper, a new distribution is proposed by a mixture of two distributions; Exponential and Exponential-Rama the proposed distribution is referred to as the Double XRama distribution. It is flexible in modeling lifetime data. The properties of the XRama distribution were derived and an analysis of the behaviour was conducted. The mathematical properties which include moments, the shape of the distribution, Quantile function, hazard function, survival function, stochastic ordering, mean deviation, Bonferroni and Lorenz curve, order statistic, and Renyi entropy have been studied. From the results, the proposed model competes favorably among the members of the XRama class of distributions.","PeriodicalId":507233,"journal":{"name":"Earthline Journal of Mathematical Sciences","volume":"75 s320","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthline Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34198/ejms.14324.477500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new distribution is proposed by a mixture of two distributions; Exponential and Exponential-Rama the proposed distribution is referred to as the Double XRama distribution. It is flexible in modeling lifetime data. The properties of the XRama distribution were derived and an analysis of the behaviour was conducted. The mathematical properties which include moments, the shape of the distribution, Quantile function, hazard function, survival function, stochastic ordering, mean deviation, Bonferroni and Lorenz curve, order statistic, and Renyi entropy have been studied. From the results, the proposed model competes favorably among the members of the XRama class of distributions.
双 XRAMA 分布:理论与应用
本文提出了一种新的分布,即指数分布和指数-拉玛分布的混合分布。它在建立生命周期数据模型时非常灵活。我们推导出了 XRama 分布的属性,并对其行为进行了分析。研究的数学特性包括矩、分布形状、量子函数、危险函数、生存函数、随机排序、平均偏差、Bonferroni 和 Lorenz 曲线、阶次统计量和 Renyi 熵。研究结果表明,所提出的模型在 XRama 分布类中具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信