{"title":"ERRRT-A*: A fast path planning algorithm suitable for large-scale scenes","authors":"Lixin Zhang, Hongtao Yin, Ang Li, Longbiao Hu","doi":"10.3233/jifs-238695","DOIUrl":null,"url":null,"abstract":"In large-scale scenes, how to quickly obtain paths while ensuring the shortest possible path length is a key issue. Rapidly-exploring Random Tree (RRT) have the characteristic of quickly exploring the state space, but it is often difficult to obtain a short path. To overcome this problem, this paper proposes an improved RRT algorithm based on equidistance retention strategy and A* local search(ERRRT-A*). First, RRT is used for large-step global fast exploration to obtain approximate paths. Then, an equidistance retention strategy is used to discard most of the points and retain a small number of key points. Finally, A* is used to search between each segment to obtain a new path. The ERRRT-A* algorithm is compared with other commonly used algorithms on maps of different size in terms of path length and planning time. Simulation results indicate that compared with other algorithms, this algorithm achieves fast planning in large-scale scenes while obtaining short path length, which can effectively balance the path length and planning time.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-238695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In large-scale scenes, how to quickly obtain paths while ensuring the shortest possible path length is a key issue. Rapidly-exploring Random Tree (RRT) have the characteristic of quickly exploring the state space, but it is often difficult to obtain a short path. To overcome this problem, this paper proposes an improved RRT algorithm based on equidistance retention strategy and A* local search(ERRRT-A*). First, RRT is used for large-step global fast exploration to obtain approximate paths. Then, an equidistance retention strategy is used to discard most of the points and retain a small number of key points. Finally, A* is used to search between each segment to obtain a new path. The ERRRT-A* algorithm is compared with other commonly used algorithms on maps of different size in terms of path length and planning time. Simulation results indicate that compared with other algorithms, this algorithm achieves fast planning in large-scale scenes while obtaining short path length, which can effectively balance the path length and planning time.