Solving Nonlinear Time-Fractional Partial Differential Equations Using Conformable Fractional Reduced Differential Transform with Adomian Decomposition Method

R. S. Teppawar, R. N. Ingle, R. A. Muneshwar
{"title":"Solving Nonlinear Time-Fractional Partial Differential Equations Using Conformable Fractional Reduced Differential Transform with Adomian Decomposition Method","authors":"R. S. Teppawar, R. N. Ingle, R. A. Muneshwar","doi":"10.37256/cm.5120242463","DOIUrl":null,"url":null,"abstract":"In this article, we use a new technique called conformable fractional reduced differential transform (CFRDT) with Adomian decomposition to estimate the solution of one and two-dimensional time-fractional partial linear and nonlinear differential equations with initial values. We explain the convergence analysis of this technique. The obtained results illustrate that the novel method is efficient and easy to use to find approximate solutions for the time-fractional partial differential equations (PDEs). Thus, the suggested method has a significant impact on how engineering, physics, and other disciplines solve fractional PDEs. Furthermore, we analyze the solution of problems with a 2D or 3D graphical representation by using Mathematica software.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120242463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we use a new technique called conformable fractional reduced differential transform (CFRDT) with Adomian decomposition to estimate the solution of one and two-dimensional time-fractional partial linear and nonlinear differential equations with initial values. We explain the convergence analysis of this technique. The obtained results illustrate that the novel method is efficient and easy to use to find approximate solutions for the time-fractional partial differential equations (PDEs). Thus, the suggested method has a significant impact on how engineering, physics, and other disciplines solve fractional PDEs. Furthermore, we analyze the solution of problems with a 2D or 3D graphical representation by using Mathematica software.
用阿多米安分解法的可变分式还原微分变换求解非线性时域偏微分方程
在本文中,我们使用了一种名为保形分数还原微分变换(CFRDT)与阿多米安分解的新技术,来估计带初值的一维和二维时间分数偏线性和非线性微分方程的解。我们解释了该技术的收敛性分析。所得结果表明,这种新方法在寻找时分数偏微分方程(PDEs)的近似解时既高效又简便。因此,所建议的方法对工程、物理和其他学科如何求解分数偏微分方程具有重要影响。此外,我们还利用 Mathematica 软件分析了二维或三维图形表示问题的解法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信